
Indexes

Kathleen Durant PhD
Northeastern University
CS 3200

Outline for the day

• Index definition
• Types of tree files organization

• B+ trees
• ISAM

• Choosing indexed fields
• Indexes in InnoDB

2

Indexes
• A typical file allows us to retrieve records:

• by specifying a file offset or a rid, or
• by scanning all records sequentially

• Sometimes, we want to retrieve records by specifying the
values in one or more fields
• Examples:
• Find all students in the “CS” department
• Find all students with a gpa > 3

• Indexes are file structures that enable us to answer such
value-based queries efficiently.

3

Indexes
• An index on a file speeds up selections on the search key fields

for the index
• Any subset of the fields of a relation can be the search key for an

index on the relation
• Search key is not the same as a key in the DB

• An index contains a collection of data entries, and supports
efficient retrieval of all data entries with a given key value k.

4

Why Index?
• Database tables have many records and ..

• linear search is very slow, complexity is O(n)
• Keeping a file sorted to apply a binary search is costly

• Indexes improve search performance
• But add extra cost to INSERT/UPDATE/ DELETE

• Many options for indexes
• Hash Indexes (MEMORY and NDB)
• Bitmap Indexes (not available in MySQL)
• B-Tree Indexes and derivatives (MyISAM, InnoDB)

5

Index Concept
• Main idea: A separate data structure used to locate records
• Most generally, index is a list of value/address pairs

• Each pair is an index “entry”
• Value is the index “key”
• Address will point to a data record, or to a data page
• The assumption is that the value/address pair will be much

smaller in size than the full record
• If index is small, a copy can be maintained in memory

• Permanent disk copy is still needed

6

Indexing Pitfalls
• Index itself is a data store

• Occupies disk space
• Must worry about maintenance, consistency, recovery, etc.

• Large indices won't fit in memory
• May require multiple seeks to locate record entry

7

Essential for Multilevel Indexes

• Should support efficient random access
• Should also support efficient sequential access, if possible

• Should have low height
• Implies high fan out: refers to the number of children nodes for

an internal node.
• Should be efficiently updatable
• Should be storage-efficient
• Top level(s) should fit in memory

8

Tree Structured Indexes

• Tree-structured indexing techniques support both
range searches and equality searches.

• Tree structures with search keys on value-based
domains
• ISAM: static structure
• B+ tree: dynamic, adjusts gracefully under inserts and

deletes.

9

Range Searches
• ``Find all students with gpa > 3.0’’

• If data is in a sorted file, do binary search to find first such
student, then scan to find others.

• Cost of binary search can be quite high.
• Simple idea: Create an `index’ file.

 Can do a binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

10

ISAM
• = Indexed Sequential Access Method

• IBM terminology
• “Indexed Sequential” more general term (non-IBM)
• ISAM as described in textbook is very close to B+ tree

• simpler versions exist

• Main idea: maintain sequential ordered file but give it an
index
• Sequentiality for efficient “batch” processing
• Index for random record access

11

ISAM Technique
• Build a dense index of the pages (1st level index)

• Sparse from a record viewpoint
• Then build an index of the 1st level index (2nd level index)
• Continue recursively until top level index fits on 1 page
• Some implementations may stop after a fixed # of levels

12

Updating an ISAM File
• Data set must be kept sequential

• So that it can be processed without the index
• May have to rewrite entire file to add records
• Could use overflow pages

• chained together or in fixed locations (overflow area)

• Index is usually NOT updated as records are added or deleted
• Once in a while the whole thing is “reorganized”

• Data pages recopied to eliminate overflows
• Index recreated

13

ISAM Pros, Cons
• Pro

• Relatively simple
• Great for true sequential access

• Cons
• Not very dynamic
• Inefficient if lots of overflow pages
• Can only be one ISAM index per file

14

ISAM

• Leaf pages contain sorted data records
• Non-leaf part directs searches to the data records; static once built
• Inserts/deletes: use overflow pages, bad for frequent inserts.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages
(static!)

Pages
Overflow

page
Primary pages

Leaf

15

Comments on ISAM
• File creation: Leaf (data) pages allocated

sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

• Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in leaf
pages.

• Search: Start at root; use key comparisons to go
to leaf. Cost log F N ; F = # entries/index pg, N =
leaf pgs

• Insert: Find leaf data entry belongs to, and put it
there.

• Delete: Find and remove from leaf; if empty
overflow page, de-allocate.

 Static tree structure: inserts/deletes affect only leaf pages.

Data
Pages

Index Pages

Overflow pages

Definition of B+ tree
• A B+ tree of order n is a height-balanced tree ,

where each node may have up to n children, and
in which:
• All leaves (leaf nodes) are on the same level of the tree
• No node can contain more than n children

• Size limitation
• All nodes except the root have at least n/2 children
• The root is either a leaf node, or it has at least n/2

children
• Ensures that a fixed maximum number of reads

would be required to access any data requested,
based on the height of the tree

17

B+ tree properties
• The depth of a tree is the maximum number of levels

between the root node and a leaf node in the tree.
• The degree or order, of a tree is the maximum number of

children allowed per parent.
• Large degrees create broader, shallower (shorter) trees.
• Because access time in a tree structure depends upon depth than

on breadth, it is advantageous to have “bushy,” shallow trees.
• The number of key values contained in a nonleaf node is 1 less

than the number of pointers (the order).
• Leaf nodes are linked in order of key values.

• Provides a mechanism for retrieving a range of records
18

Example B+ Tree

• Search begins at root, and key comparisons direct it to a
leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 13* 14* 17* 19* 20* 24* 24* 27* 30* 33* 34* 38* 39*

13

<=13
>13 <=17

>17 <=24 >24 <=30
>30

19

B+ Trees in Practice

• Typical order: 200. Typical fill-factor: 67%.
• Average fan-out for internal nodes = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 = 1 page = 8 Kbytes
• Level 2 = 133 pages = 1 Mbyte
• Level 3 = 17,689 pages = 133 MBytes

20

Insertion in B Tree
• 1. 2.
• a, g, f,b: k:

a b f g

a b g k

f

21

B tree: Data record stored in the tree

Insertion (cont.)

• 3. 4.
• d, h, m: j:

• 5. 6.
• e, s, i, r: x:
•

f

a b d g h k m

f j

a b d g h k m

f j

a b d e k m r sg h i

f j r

g h i s xk ma b d e 22

Insertion (cont.)

7.
c, l, n, t, u:

8.
p:

c f j r

s t u xk l m n g h ia b d e

j

a b d e k l n p

m rc f

g h i s t u x

23

B+ Insertion algorithm
• Descend the tree where the leaf fits
• If the node has an empty spot insert the key/reference pair

into the node
• If the node is already full, split into 2 nodes, distributing the

keys evenly between the 2 nodes
• If the node is a leaf, take a copy of the minimum value in the

second of these 2 nodes and repeat this insertion algorithm to
insert it into the parent node

• If the parent is a non-leaf, exclude the middle value (median)
during the split and repeat this insertion algorithm to insert
this excluded value into the parent node.

24

B+ Deletion Algorithm
• Descend to the leaf where the key exists
• Remove the required record from the node
• If the node still has enough records then stop
• If the node does not have enough records then check its

neighbors and distribute the keys. Need to fix the upper index
node to represent the new split value

• If the nodes does not have enough records and cannot
redistribute records from a neighbor, then merge with a
neighbor node and remove the old split value from the parent
node

25

Summary: B+ trees

• Typically, 67% occupancy on average.
• Usually preferable to ISAM, modulo locking considerations; adjusts

to growth gracefully.
• Key compression increases fan-out, reduces height.
• Most widely used index in database management systems because

of its versatility. One of the most optimized components of a
DBMS.

26

Process: Choice of indexes
• One approach:

• Consider the most important queries in turn.
• Consider the best plan using the current indexes, and

see if a better plan is possible with an additional index.
If so, create it.

• Must understand how a DBMS evaluates queries
and creates query evaluation plans.

• Before creating an index, must also consider the
impact on updates in the workload.

• Trade-off: Indexes can make select queries go
faster, updates slower. Require disk space, too.

27

Index selection guideline
• Attributes in WHERE clause are candidates for index keys.

• Exact match condition suggests hash index.
• Range query suggests tree index.

• Clustering is especially useful for range queries; can also help
on equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
• Order of attributes is important for range queries.
• Such indexes can sometimes enable index-only strategies for

important queries: when only indexed attributes are needed.
• For index-only strategies, clustering is not important.

• Try to choose indexes that benefit many queries.
• Since only one index can be clustered per relation, choose it

based on important queries that would benefit the most from
clustering.

28

Indexes in InnoDB
• Every InnoDB table has a special index called the clustered

index (by default built on the primary key)
• Record locks always lock index records

• Even if a table is defined with no indexes
• InnoDB creates a hidden clustered index and uses this index for

record locking
• Accessing a row through the clustered index is fast because

the index search leads directly to the page with all the row
data.

• All InnoDB indexes are B+ trees where the index records are
stored in the leaf pages of the tree

• You can configure the page size for all InnoDB tablespaces in a
MySQL instance with the variable innodb_page_size
• default size of an index page is 16KB

29

InnoDB Index structure
• Root page is allocated when the INDEX is created and is stored

in the data dictionary
• It can never be relocated or removed

• All pages at each level are double-linked to each other
• All pages have anchors for the beginning and the end of the

linked list of records
• Statically defined: Infimum – lowest key, supremum – highest key

• Within a page, records are singly-linked in ascending order
• Records not stored in ascending order

• Non-leaf pages contain page addresses to a child node
• Leaf pages contain the actual data record (non-key data)

30

Tree Levels in InnoDB

31

http://blog.jcole.us/2013/01/10/btree-index-structures-in-innodb/

InnoDB: Secondary Index
• You can create multiple indexes on a table

• These additional indexes that are not on the primary key are
secondary indexes

• Each record in a secondary index contains the primary key
columns for the row, as well as the columns specified for the
secondary index

• InnoDB uses this primary key value to search for the row in
the clustered index

32

Index Optimizations in InnoDB
• The change buffer is a special data structure that caches changes

to secondary index pages when affected pages are not in the buffer
pool

• The buffered changes are merged later when the pages are loaded
into the buffer pool by other read operations.

• secondary indexes are usually non-unique, and inserts into
secondary indexes happen in a relatively random order.

• Merging cached changes at a later time, when affected pages are
read into the buffer pool by other operations, avoids substantial
random access I/O that would be required to read-in secondary
index pages from disk

• Periodically, the purge operation that runs when the system is
mostly idle, writes the updated index pages to disk

• The purge operation can write disk blocks for a series of index values
more efficiently than if each value were written to disk immediately 33

InnoDB locks
• MySQL sets record locks on every index record that is scanned

in the processing of a SQL statement
• Types of object locks

• Record lock: This is a lock on an index record.
• Gap lock: This is a lock on a gap between index records, or a lock

on the gap before the first or after the last index record.
• Next-key lock: This is a combination of a record lock on the index

record and a gap lock on the gap before the index record.
• InnoDB uses next-key locks for searches and index scans
• If one session has a shared or exclusive lock on record R in an

index, another session cannot insert a new index record in the
gap immediately before R in the index order

34

InnoDB hash indexes
• Based on the observed pattern of searches, MySQL builds a

hash index using a prefix of the index key.
• Hash indexes are built on demand for those pages of the index

that are often accessed.
• The prefix of the key can be any length, and it may be that

only some of the values in the B+tree appear in the hash
index.

• If a table fits almost entirely in main memory, a hash index can
speed up queries by enabling direct lookup of any element,
turning the index value into a sort of in memory pointer.

35

Summary: Tree-based Index
• Tree-structured indexes are ideal for range-searches,

also good for equality searches.
• ISAM is a static structure.

• Only leaf pages modified; overflow pages needed.
• Overflow chains can degrade performance unless size of data set and

data distribution stay constant.

• B+ tree is a dynamic structure.
• Inserts/deletes leave tree height-balanced; log F N cost.
• High fanout (F) means depth rarely more than 3 or 4.
• Almost always better than maintaining a sorted file.

• InnoDB provides many optimizations to speed up the access to a
record 36

	Indexes
	Outline for the day
	Indexes
	Indexes
	Why Index?
	Index Concept
	Indexing Pitfalls
	Essential for Multilevel Indexes
	Tree Structured Indexes
	Range Searches
	ISAM
	ISAM Technique
	Updating an ISAM File
	ISAM Pros, Cons
	ISAM
	Comments on ISAM
	Definition of B+ tree
	B+ tree properties
	Example B+ Tree
	B+ Trees in Practice
	Insertion in B Tree
	Insertion (cont.)
	Insertion (cont.)
	B+ Insertion algorithm
	B+ Deletion Algorithm
	Summary: B+ trees
	Process: Choice of indexes
	Index selection guideline
	Indexes in InnoDB
	InnoDB Index structure
	Tree Levels in InnoDB
	InnoDB: Secondary Index
	Index Optimizations in InnoDB
	InnoDB locks
	InnoDB hash indexes
	Summary: Tree-based Index

