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Outline for the day

• Index definition
• Types of tree files organization

• B+ trees
• ISAM

• Choosing  indexed fields 
• Indexes in InnoDB

2



Indexes
• A typical file allows us to retrieve records:

• by specifying a file offset or a  rid, or
• by scanning all records sequentially

• Sometimes, we want to retrieve records by specifying the 
values in one or more fields
• Examples:
• Find all students in the “CS” department
• Find all students with a gpa > 3

• Indexes are file structures that enable us to answer such 
value-based queries efficiently.
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Indexes 
• An index on a file speeds up selections on the search key fields 

for the index
• Any subset of the fields of a relation can be the search key for an 

index on the relation
• Search key is not the same as a key in the DB 

• An index contains a collection of data entries, and supports 
efficient retrieval of all data entries with a given key value k.
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Why Index?
• Database tables have many records and ..

• linear search is very slow, complexity is O(n) 
• Keeping a file sorted to apply a binary search is costly

• Indexes improve search performance 
• But add extra cost to INSERT/UPDATE/ DELETE

• Many options for indexes 
• Hash Indexes (MEMORY and NDB) 
• Bitmap Indexes (not available in MySQL) 
• B-Tree Indexes and derivatives (MyISAM, InnoDB) 
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Index Concept
• Main idea: A separate data structure used to locate records 
• Most generally, index is a list of value/address pairs

• Each pair is an index “entry”
• Value is the index “key”
• Address will point to a data record, or to a data page
• The assumption is that the value/address pair will be much 

smaller in size than the full record
• If index is small, a copy can be maintained in memory

• Permanent disk copy is still needed
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Indexing Pitfalls
• Index itself is a data store 

• Occupies disk space
• Must worry about maintenance, consistency, recovery, etc.

• Large indices won't fit in memory
• May require multiple seeks to locate record entry
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Essential for Multilevel Indexes

• Should support efficient random access 
• Should also support efficient sequential access, if possible

• Should have low height
• Implies high fan out: refers to the number of children nodes for 

an internal node.
• Should be efficiently updatable
• Should be storage-efficient
• Top level(s) should fit in memory
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Tree Structured Indexes

• Tree-structured indexing techniques support both 
range searches and equality searches.

• Tree structures with search keys on value-based 
domains
• ISAM:  static structure
• B+ tree:  dynamic, adjusts gracefully under inserts and 

deletes.

9



Range Searches
• ``Find all students with gpa > 3.0’’

• If data is in a sorted file, do binary search to find first such 
student, then scan to find others.

• Cost of binary search can be quite high.
• Simple idea:  Create an `index’ file.

 Can do a binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File
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ISAM
• = Indexed Sequential Access Method

• IBM terminology
• “Indexed Sequential” more general term (non-IBM)
• ISAM as described in textbook is very close to B+ tree

• simpler versions exist

• Main idea: maintain sequential ordered file but give it an 
index
• Sequentiality for efficient “batch” processing
• Index for random record access
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ISAM Technique
• Build a dense index of the pages (1st level index)

• Sparse from a record viewpoint
• Then build an index of the 1st level index (2nd level index)
• Continue recursively until top level index fits on 1 page
• Some implementations may stop after a fixed # of levels
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Updating an ISAM File
• Data set must be kept sequential

• So that it can be processed without the index
• May have to rewrite entire file to add records
• Could use overflow pages

• chained together or in fixed locations (overflow area)

• Index is usually NOT updated as records are added or deleted
• Once in a while the whole thing is “reorganized”

• Data pages recopied to eliminate overflows
• Index recreated
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ISAM Pros, Cons
• Pro

• Relatively simple
• Great for true sequential access

• Cons
• Not very dynamic
• Inefficient if lots of overflow pages
• Can only be one ISAM index per file 
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ISAM

• Leaf pages contain sorted data records
• Non-leaf part directs searches to the data records; static once built
• Inserts/deletes: use overflow pages, bad for frequent inserts.

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf
Pages
(static!)

Pages
Overflow 

page
Primary pages

Leaf
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Comments on ISAM
• File creation:  Leaf (data) pages allocated                  

sequentially, sorted by search key; then index        
pages allocated, then space for overflow pages.

• Index entries:  <search key value, page id>;  they   
`direct’ search for data entries, which are in leaf 
pages.

• Search:  Start at root; use key comparisons to go 
to leaf.  Cost     log F N ; F = # entries/index pg, N = 
# leaf pgs

• Insert:  Find leaf data entry belongs to, and put it 
there.

• Delete:  Find and remove from leaf; if empty 
overflow page, de-allocate. 

 Static tree structure:  inserts/deletes affect only leaf pages.

Data 
Pages

Index Pages

Overflow pages



Definition of B+ tree
• A B+ tree of order n is a height-balanced tree , 

where each node may have up to n children, and 
in which:
• All leaves (leaf nodes) are on the same level of the tree
• No node can contain more than n children

• Size limitation
• All nodes except the root have at least n/2 children
• The root is either a leaf node, or it has at least n/2 

children
• Ensures that a fixed maximum number of reads 

would be required to access any data requested, 
based on the height of the tree

17



B+ tree properties
• The depth of a tree is the maximum number of levels 

between the root node and a leaf node in the tree.
• The degree or order, of a tree is the maximum number of 

children allowed per parent.
• Large degrees create broader, shallower (shorter) trees. 
• Because access time in a tree structure depends upon depth than 

on breadth, it is advantageous to have “bushy,” shallow trees.
• The number of key values contained in a nonleaf node is 1 less 

than the number of pointers (the order).
• Leaf nodes are linked in order of key values.

• Provides a mechanism for retrieving a range of records
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Example B+ Tree

• Search begins at root, and key comparisons direct it to a 
leaf (as in ISAM).

• Search for 5*, 15*, all data entries >= 24* ...

Root

17 24 30

2* 3* 5* 13* 14* 17* 19* 20* 24* 24* 27* 30* 33* 34* 38* 39*

13

<=13
>13 <=17

>17 <=24 >24 <=30
>30
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B+ Trees in Practice

• Typical order: 200.  Typical fill-factor: 67%.
• Average fan-out for internal nodes = 133

• Typical capacities:
• Height 4: 1334 = 312,900,700 records
• Height 3: 1333 =     2,352,637 records

• Can often hold top levels in buffer pool:
• Level 1 =           1 page  =     8 Kbytes
• Level 2 =      133 pages =     1 Mbyte
• Level 3 = 17,689 pages = 133 MBytes
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Insertion in B Tree
• 1.                                          2.
• a, g, f,b:   k:  

a    b    f    g

a     b g     k

f
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Insertion (cont.)

• 3.                                           4.
• d, h, m:                                    j:

• 5.                                            6.
• e, s, i, r:                                   x:
•

f

a   b d    g  h  k  m

f     j

a    b    d g   h k   m

f    j

a  b   d  e k m  r  sg  h  i

f    j   r 

g  h  i s    xk  ma  b  d  e 22



Insertion (cont.)

7.
c, l, n, t, u:

8.
p:

c   f    j     r

s   t   u   xk    l   m   n     g  h   ia    b d    e

j

a    b d   e k   l n   p

m   rc   f

g   h   i s    t    u   x  
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B+ Insertion algorithm
• Descend the tree where the leaf fits
• If the node has an empty spot insert the key/reference pair 

into the node
• If the node is already full, split into 2 nodes, distributing the 

keys evenly between the 2 nodes 
• If the node is a leaf, take a copy of the minimum value in the 

second of these 2 nodes and repeat this insertion algorithm to 
insert it into the parent node

• If the parent is a non-leaf, exclude the middle value  (median) 
during the split and repeat this insertion algorithm to  insert 
this excluded value into the parent node. 
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B+ Deletion Algorithm
• Descend to the leaf where the key exists
• Remove the required record from the node
• If the node still has enough records then stop
• If the node does not have enough records then check its 

neighbors and distribute the keys. Need to fix the upper index 
node to represent the new split value 

• If the nodes does not have enough records and cannot 
redistribute records from a neighbor, then merge with a 
neighbor node and remove the old split value from the parent 
node
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Summary: B+ trees 

• Typically, 67% occupancy on average.
• Usually preferable to ISAM, modulo locking considerations; adjusts 

to growth gracefully.
• Key compression increases fan-out, reduces height.
• Most widely used index in database management systems because 

of its versatility.  One of the most optimized components of a 
DBMS.
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Process: Choice of indexes
• One approach: 

• Consider the most important queries in turn. 
• Consider the best plan using the current indexes, and 

see if a better plan is possible with an additional index. 
If so, create it.

• Must understand how a DBMS evaluates queries 
and creates query evaluation plans.

• Before creating an index, must also consider the 
impact on updates in the workload.

• Trade-off: Indexes can make select queries go 
faster, updates slower. Require disk space, too.
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Index selection guideline
• Attributes in WHERE clause are candidates for index keys.

• Exact match condition suggests hash index.
• Range query suggests tree index.

• Clustering is especially useful for range queries; can also help 
on equality queries if there are many duplicates.

• Multi-attribute search keys should be considered when a 
WHERE clause contains several conditions.
• Order of attributes is important for range queries.
• Such indexes can sometimes enable index-only strategies for 

important queries: when only indexed attributes are needed.
• For index-only strategies, clustering is not important.

• Try to choose indexes that benefit many queries.
• Since only one index can be clustered per relation, choose it 

based on important queries that would benefit the most from 
clustering.
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Indexes in InnoDB
• Every InnoDB table has a special index called the clustered 

index (by default built on the primary key)
• Record locks always lock index records

• Even if a table is defined with no indexes
• InnoDB creates a hidden clustered index and uses this index for 

record locking
• Accessing a row through the clustered index is fast because 

the index search leads directly to the page with all the row 
data.

• All InnoDB indexes are B+ trees where the index records are 
stored in the leaf pages of the tree

• You can configure the page size for all InnoDB tablespaces in a 
MySQL instance with the variable innodb_page_size
• default size of an index page is 16KB
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InnoDB Index structure
• Root page is allocated when the INDEX is created and is stored 

in the data dictionary
• It can never be relocated or removed

• All pages at each level are double-linked to each other
• All pages have anchors for the beginning and the end of the 

linked list of records
• Statically defined: Infimum – lowest key, supremum – highest key

• Within a page, records are singly-linked in ascending order
• Records not stored in ascending order 

• Non-leaf pages contain page addresses to a child node
• Leaf pages contain the actual data record (non-key data)
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Tree Levels in InnoDB
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InnoDB: Secondary Index
• You can create multiple indexes on a table

• These additional indexes that are not on the primary key are 
secondary indexes

• Each record in a secondary index contains the primary key 
columns for the row, as well as the columns specified for the 
secondary index

• InnoDB uses this primary key value to search for the row in 
the clustered index
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Index Optimizations in InnoDB
• The change buffer is a special data structure that caches changes 

to secondary index pages when affected pages are not in the buffer 
pool

• The buffered changes are merged later when the pages are loaded 
into the buffer pool by other read operations.

• secondary indexes are usually non-unique, and inserts into 
secondary indexes happen in a relatively random order.

• Merging cached changes at a later time, when affected pages are 
read into the buffer pool by other operations, avoids substantial 
random access I/O that would be required to read-in secondary 
index pages from disk

• Periodically, the purge operation that runs when the system is 
mostly idle, writes the updated index pages to disk

• The purge operation can write disk blocks for a series of index values 
more efficiently than if each value were written to disk immediately 33



InnoDB  locks
• MySQL sets record locks on every index record that is scanned 

in the processing of a SQL statement
• Types of  object locks 

• Record lock: This is a lock on an index record.
• Gap lock: This is a lock on a gap between index records, or a lock 

on the gap before the first or after the last index record.
• Next-key lock: This is a combination of a record lock on the index 

record and a gap lock on the gap before the index record.
• InnoDB uses next-key locks for searches and index scans
• If one session has a shared or exclusive lock on record R in an 

index, another session cannot insert a new index record in the 
gap immediately before R in the index order
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InnoDB hash indexes
• Based on the observed pattern of searches, MySQL builds a 

hash index using a prefix of the index key.
• Hash indexes are built on demand for those pages of the index 

that are often accessed.
• The prefix of the key can be any length, and it may be that 

only some of the values in the B+tree appear in the hash 
index.

• If a table fits almost entirely in main memory, a hash index can 
speed up queries by enabling direct lookup of any element, 
turning the index value into a sort of in memory pointer.
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Summary: Tree-based Index
• Tree-structured indexes are ideal for range-searches, 

also good for equality searches.
• ISAM is a static structure.

• Only leaf pages modified; overflow pages needed.
• Overflow chains can degrade performance unless size of data set and 

data distribution stay constant.

• B+ tree is a dynamic structure.
• Inserts/deletes leave tree height-balanced; log F N cost.
• High fanout (F) means depth rarely more than 3 or 4.
• Almost always better than maintaining a sorted file.

• InnoDB provides many optimizations to speed up the access to a 
record 36
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