

Example Algorithms
Precedence Graph
Waits for Graph
Timestamping

Deadlocks

• A deadlock is an
impasse that may
result when two or
more transactions
are waiting for locks
to be released which
are held by each
other.
• For example: T1 has a

lock on X and is waiting
for a lock on Y, and T2
has a lock on Y and is
waiting for a lock on X.

• Given a schedule, we
can detect deadlocks
which will happen in
this schedule using a
wait-for graph
(WFG).

Precedence/Wait-For Graphs

• Precedence graph
• Each transaction is a

vertex
• Arcs from T1 to T2 if

• T1 reads X before T2
writes X

• T1 writes X before T2
reads X

• T1 writes X before T2
writes X

• Wait-for Graph
• Each transaction is a

vertex
• Arcs from T2 to T1 if

• T1 read-locks X then
T2 tries to write-lock
it

• T1 write-locks X then
T2 tries to read-lock
it

• T1 write-locks X then
T2 tries to write-lock
it

Example

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Wait for graph

Precedence graph

T2 T3

T1

T1

T2 T3

Example

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Wait for graph

Precedence graph

T2 T3

T1

T1

T2 T3

Example

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Wait for graph

Precedence graph

T2 T3

T1

T1

T2 T3

Example

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Wait for graph

Precedence graph

T2 T3

T1

T1

T2 T3

Example

T1 Read(X) read-locks(X)
T2 Read(Y) read-locks(Y)
T1 Write(X) write-lock(X)
T2 Read(X) tries read-lock(X)
T3 Read(Z)
T3 Write(Z)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Wait for graph

Precedence graph

T3

T1

T2

T1

T2 T3

Example

T1 Read(X) read-locks(X)
T2 Read(Y) read-locks(Y)
T1 Write(X) write-lock(X)
T2 Read(X) tries read-lock(X)
T3 Read(Z) read-lock(Z)
T3 Write(Z) write-lock(Z)
T1 Read(Y) read-lock(Y)
T3 Read(X) tries read-lock(X)
T1 Write(Y)

Wait for graph

Precedence graph

T1

T2 T3

T1

T2 T3

Example

T1 Read(X) read-locks(X)
T2 Read(Y) read-locks(Y)
T1 Write(X) write-lock(X)
T2 Read(X) tries read-lock(X)
T3 Read(Z) read-lock(Z)
T3 Write(Z) write-lock(Z)
T1 Read(Y) read-lock(Y)
T3 Read(X) tries read-lock(X)
T1 Write(Y) tries write-lock(Y)

Wait for graph

Precedence graph

T1

T2 T3

T1

T2 T3

Deadlock Prevention

• Deadlocks can arise
with 2PL
• Deadlock is less of a

problem than an
inconsistent DB

• We can detect and
recover from deadlock

• It would be nice to
avoid it altogether

• Conservative 2PL
• All locks must be

acquired before the
transaction starts

• Hard to predict what
locks are needed

• Low ‘lock utilisation’ -
transactions can hold
on to locks for a long
time, but not use
them much

Deadlock Prevention

• We impose an
ordering on the
resources
• Transactions must

acquire locks in this
order

• Transactions can be
ordered on the last
resource they locked

• This prevents
deadlock
• If T1 is waiting for a

resource from T2 then
that resource must
come after all of T1’s
current locks

• All the arcs in the
wait-for graph point
‘forwards’ - no cycles

Example of resource ordering

• Suppose resource
order is: X < Y

• This means, if you
need locks on X and
Y, you first acquire a
lock on X and only
after that a lock on Y
• (even if you want to

write to Y before
doing anything to X)

• It is impossible to
end up in a situation
when T1 is waiting
for a lock on X held
by T2, and T2 is
waiting for a lock on
Y held by T1.

Timestamping

• Transactions can be
run concurrently
using a variety of
techniques

• We looked at using
locks to prevent
interference

• An alternative is
timestamping
• Requires less

overhead in terms of
tracking locks or
detecting deadlock

• Determines the order
of transactions before
they are executed

Timestamping

• Each transaction has
a timestamp, TS,
and if T1 starts
before T2 then
TS(T1) < TS(T2)
• Can use the system

clock or an
incrementing counter
to generate
timestamps

• Each resource has
two timestamps
• R(X), the largest

timestamp of any
transaction that has
read X

• W(X), the largest
timestamp of any
transaction that has
written X

Timestamp Protocol

• If T tries to read X
• If TS(T) < W(X) T is

rolled back and
restarted with a later
timestamp

• If TS(T) ≥ W(X) then
the read succeeds and
we set R(X) to be
max(R(X), TS(T))

• T tries to write X
• If TS(T) < W(X) or

TS(T) < R(X) then T
is rolled back and
restarted with a later
timestamp

• Otherwise the write
succeeds and we set
W(X) to TS(T)

Timestamping Example

• Given T1 and T2 we
will assume
• The transactions

make alternate
operations

• Timestamps are
allocated from a
counter starting at 1

• T1 goes first

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS

T1 T2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1

T1 T2

1

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1 2

T1 T2

2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1 2

T1 T2

2 1

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1 2

T1 T2

2 2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1 2

T1 T2

2 2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1 2

T1 T2

2 2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 1 2

T1 T2

2 2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 3 2

T1 T2

2 2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 3 2

T1 T2

2 2

2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 3 2

T1 T2

3 2

2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 3 2

T1 T2

3 3

2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 3 2

T1 T2

3 3

2

Timestamp Example

T1 T2
Read(X) Read(X)
Read(Y) Read(Y)
Y = Y + X Z = Y - X
Write(Y) Write(Z)

X Y Z

R

W

TS 3 2

T1 T2

3 3

3 2

Timestamping

• The protocol means
that transactions
with higher times
take precedence
• Equivalent to running

transactions in order
of their final time
values

• Transactions don’t
wait - no deadlock

• Problems
• Long transactions

might keep getting
restarted by new
transactions -
starvation

• Rolls back old
transactions, which
may have done a lot
of work

	Example Algorithms
	Precedence Graph
	Waits for Graph
	Timestamping
	• Given a schedule, we can detect deadlocks which will happen in this schedule using a wait-for graph (WFG).
	• Wait-for Graph
	• Deadlocks can arise with 2PL
	• Conservative 2PL
	• We impose an ordering on the resources
	• This prevents deadlock
	• Suppose resource order is: X < Y
	• It is impossible to end up in a situation when T1 is waiting for a lock on X held by T2, and T2 is waiting for a lock on Y held by T1.
	• Each transaction has a timestamp, TS, and if T1 starts before T2 then TS(T1) < TS(T2)
	• Each resource has two timestamps
	• If T tries to read X
	• T tries to write X
	• Given T1 and T2 we will assume
	T1 T2
	• Problems

