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Deadlocks 
 
 
 

• A deadlock is an 
impasse that may 
result when two or 
more transactions 
are waiting for locks 
to be released which 
are held by each 
other. 
• For example: T1 has a 

lock on X and is waiting 
for a lock on Y, and T2 
has a lock on Y and is 
waiting for a lock on X. 

• Given a schedule, we 
can detect deadlocks 
which will happen in 
this schedule using a 
wait-for graph 
(WFG). 



 
 
 
 

Precedence/Wait-For Graphs 
 
 
 

• Precedence graph 
• Each transaction is a 

vertex 
• Arcs from T1 to T2 if 

• T1 reads X before T2 
writes X 

• T1 writes X before T2 
reads X 

• T1 writes X before T2 
writes X 

• Wait-for Graph 
• Each transaction is a 

vertex 
• Arcs from T2 to T1 if 

• T1 read-locks X then 
T2 tries to write-lock 
it 

• T1 write-locks X then 
T2 tries to read-lock 
it 

• T1 write-locks X then 
T2 tries to write-lock 
it 



Example 
 

 

 
T1 Read(X) 
T2 Read(Y) 
T1 Write(X) 
T2 Read(X) 
T3 Read(Z) 
T3 Write(Z) 
T1 Read(Y) 
T3 Read(X) 
T1 Write(Y) 
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T1 Read(X) read-locks(X) 
T2 Read(Y) read-locks(Y) 
T1 Write(X) write-lock(X) 
T2 Read(X) tries read-lock(X) 
T3 Read(Z) 
T3 Write(Z) 
T1 Read(Y) 
T3 Read(X) 
T1 Write(Y) 
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T1 Read(X) read-locks(X) 
T2 Read(Y) read-locks(Y) 
T1 Write(X) write-lock(X) 
T2 Read(X) tries read-lock(X) 
T3 Read(Z) read-lock(Z) 
T3 Write(Z) write-lock(Z) 
T1 Read(Y) read-lock(Y) 
T3 Read(X) tries read-lock(X) 
T1 Write(Y) 
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T1 Read(X) read-locks(X) 
T2 Read(Y) read-locks(Y) 
T1 Write(X) write-lock(X) 
T2 Read(X) tries read-lock(X) 
T3 Read(Z) read-lock(Z) 
T3 Write(Z) write-lock(Z) 
T1 Read(Y) read-lock(Y) 
T3 Read(X) tries read-lock(X) 
T1 Write(Y) tries write-lock(Y) 
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Deadlock Prevention 
 

 
 
 

• Deadlocks can arise 
with 2PL 
• Deadlock is less of a 

problem than an 
inconsistent DB 

• We can detect and 
recover from deadlock 

• It would be nice to 
avoid it altogether 

• Conservative 2PL 
• All locks must be 

acquired before the 
transaction starts 

• Hard to predict what 
locks are needed 

• Low ‘lock utilisation’ - 
transactions can hold 
on to locks for a long 
time, but not use 
them much 



Deadlock Prevention 
 

 
 
 

• We impose an 
ordering on the 
resources 
• Transactions must 

acquire locks in this 
order 

• Transactions can be 
ordered on the last 
resource they locked 

• This prevents 
deadlock 
• If T1 is waiting for a 

resource from T2 then 
that resource must 
come after all of T1’s 
current locks 

• All the arcs in the 
wait-for graph point 
‘forwards’ - no cycles 



Example of resource ordering 
 

 
 
 

• Suppose resource 
order is: X < Y 

• This means, if you 
need locks on X and 
Y, you first acquire a 
lock on X and only 
after that a lock on Y 
• (even if you want to 

write to Y before 
doing anything to X) 

• It is impossible to 
end up in a situation 
when T1 is waiting 
for a lock on X held 
by T2, and T2 is 
waiting for a lock on 
Y held by T1. 



Timestamping 
 

 
 
 

• Transactions can be 
run concurrently 
using a variety of 
techniques 

• We looked at using 
locks to prevent 
interference 

• An alternative is 
timestamping 
• Requires less 

overhead in terms of 
tracking locks or 
detecting deadlock 

• Determines the order 
of transactions before 
they are executed 



Timestamping 
 

 
 
 

• Each transaction has 
a timestamp, TS, 
and if T1 starts 
before T2 then 
TS(T1) < TS(T2) 
• Can use the system 

clock or an 
incrementing counter 
to generate 
timestamps 

• Each resource has 
two timestamps 
• R(X), the largest 

timestamp of any 
transaction that has 
read X 

• W(X), the largest 
timestamp of any 
transaction that has 
written X 



Timestamp Protocol 
 

 
 
 

• If T tries to read X 
• If TS(T) < W(X) T is 

rolled back and 
restarted with a later 
timestamp 

• If TS(T) ≥ W(X) then 
the read succeeds and 
we set R(X) to be 
max(R(X), TS(T)) 

• T tries to write X 
• If TS(T) < W(X) or 

TS(T) < R(X) then T 
is rolled back and 
restarted with a later 
timestamp 

• Otherwise the write 
succeeds and we set 
W(X) to TS(T) 



Timestamping Example 
 

 
 
 

• Given T1 and T2 we 
will assume 
• The transactions 

make alternate 
operations 

• Timestamps are 
allocated from a 
counter starting at 1 

• T1 goes first 

 
 
 
T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 

T1 T2 

   

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 

T1 T2 

1 
  

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 2 

T1 T2 

2 
  

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 2 

T1 T2 

2 1 
 

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 2 

T1 T2 

2 2 
 

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 2 

T1 T2 

2 2 
 

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 2 

T1 T2 

2 2 
 

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 1 2 

T1 T2 

2 2 
 

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 3 2 

T1 T2 

2 2 
 

   

 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 3 2 

T1 T2 

2 2 
 

  

2 
 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 3 2 

T1 T2 

3 2 
 

  

2 
 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 3 2 

T1 T2 

3 3 
 

  

2 
 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 3 2 

T1 T2 

3 3 
 

  

2 
 



Timestamp Example 
 

 
 
 
 
 

 
 

T1 T2 
Read(X) Read(X) 
Read(Y) Read(Y) 
Y = Y + X Z = Y - X 
Write(Y) Write(Z) 

X Y Z 

R 

W 

 
 
 

TS 3 2 

T1 T2 

3 3 
 

 

3 2 
 



Timestamping 
 

 
 
 

• The protocol means 
that transactions 
with higher times 
take precedence 
• Equivalent to running 

transactions in order 
of their final time 
values 

• Transactions don’t 
wait - no deadlock 

• Problems 
• Long transactions 

might keep getting 
restarted by new 
transactions - 
starvation 

• Rolls back old 
transactions, which 
may have done a lot 
of work
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