Example Algorithms
Precedence Graph
Waits for Graph
Timestamping

Deadlocks

e A deadlock is an e Given a schedule, we
Impasse that may can detect deadlocks
result when two or which will happen in
more transactions this schedule using a
are waiting for locks wait-for graph

to be released which (WEFG).
are held by each

other.

e For example: T1 has a
lock on X and is waiting
for alock on Y, and T2
has a lock on Y and is
waiting for a lock on X.

Precedence/Wait-For Graphs

e Precedence graph e Wait-for Graph
e Each transaction is a e Each transaction is a
vertex vertex
e Arcsfrom Tl to T2 if e Arcsfrom T2 to T1 if
e T1 reads X before T2 e T1 read-locks X then
writes X T2 tries to write-lock
e T1 writes X before T2 It
reads X e T1 write-locks X then
» T1 writes X before T2 T2 tries to read-lock
writes X It

e T1 write-locks X then
T2 tries to write-lock
it

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(Z2)
T3 Write(2)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

@
@ @

Wait for graph

™
™ @

Precedence graph

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(2)
T3 Write(2)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

)
@ @

Wait for graph

(13
() @

Precedence graph

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(2)
T3 Write(2)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

)
@ @

Wait for graph

Precedence graph

T1 Read(X)
T2 Read(Y)
T1 Write(X)
T2 Read(X)
T3 Read(2)
T3 Write(2)
T1 Read(Y)
T3 Read(X)
T1 Write(Y)

Example

)
™ @

Wait for graph

&

Precedence graph

Example

T1 Read(X) read-locks(X) @
T2 Read(Y) read-locks(Y)
T1 Write(X) write-lock(X) @

T2 Read(X) tries read-lock(X)

T3 Read(2) Wait for graph
T3 Write(2)

T1 Read(Y)

T3 Read(X) @
T1 Write(Y)

Precedence graph

Example

T1 Read(X) read-locks(X) @

T2 Read(Y) read-locks(Y)

T1 Write(X) write-lock(X) @
T2 Read(X) tries read-lock(X)

T3 Read(Z) read-lock(2) Wait for graph

T3 Write(Z) write-lock(Z2)
T1 Read(Y) read-lock(Y)

T3 Read(X) tries read-lock(X) @
T1 Write(Y)

Precedence graph

Example

T1 Read(X) read-locks(X) @
T2 Read(Y) read-locks(Y)

T1 Write(X) write-lock(X) @ @
T2 Read(X) tries read-lock(X) |
T3 Read(Z) read-lock(2) Wait for graph

T3 Write(Z) write-lock(Z2)
T1 Read(Y) read-lock(Y)

T3 Read(X) tries read-lock(X) @
T1 Write(Y) tries write-lock(Y)

Precedence graph

Deadlock Prevention

e Deadlocks can arise
with 2PL

e Deadlock is less of a
problem than an
iInconsistent DB

e \We can detect and
recover from deadlock

e It would be nice to
avoid it altogether

e Conservative 2PL

e All locks must be
acquired before the
transaction starts

- Hard to predict what
locks are needed

e Low ‘lock utilisation’
transactions can hold
on to locks for a long
time, but not use
them much

Deadlock Prevention

e \We impose an e This prevents
ordering on the deadlock
resources e If T1 is waiting for a
« Transactions must resource from T2 then
acquire locks in this that resource must
order come after all of T1’s

- Transactions can be current locks

ordered on the last - All the arcs in the

resource they locked wait-for graph point
‘forwards’ - no cycles

Example of resource ordering

e Suppose resource e |t is impossible to
orderis: X <Y end up in a situation

- This means, if you when T1 Is waiting
need locks on X and for a lock on X held
Y, you first acquire a by T2, and T2 is
lock on X and only waiting for a lock on

after that a lock on Y Y held by T1.

e (even if you want to
write to Y before
doing anything to X)

Timestamping

e Transactions can be e An alternative is

run concurrently timestamping
using a variety of - Requires less
techniques overhead in terms of

_ tracking locks or
e \We looked at using detecting deadlock

locks to prevent - Determines the order

Interference of transactions before
they are executed

Timestamping

e Each transaction has e Each resource has

a timestamp, TS, two timestamps
and If T1 starts - R(X), the largest
before T2 then timestamp of any
TS(T1) < TS(T2) transaction that has
read X
e Can use the system
clock or an - W(X), the largest

timestamp of any
transaction that has
written X

Incrementing counter
to generate
timestamps

Timestamp Protocol

e If T tries to read X e T tries to write X

e IFTTS(T) <W(X) Tis e If TS(T) < W(X) or
rolled back and TS(T) < R(X) then T
restarted with a later Is rolled back and
timestamp restarted with a later

- If TS(T) = W(X) then timestamp
the read succeeds and - Otherwise the write
we set R(X) to be succeeds and we set

max(R(X), TS(T)) W(X) to TS(T)

Timestamping Example

e Given T1 and T2 we
will assume

e The transactions T1 T
make alternate
operations Read(X) Read(X)
- Timestamps are Read(Y) Read(Y)
allocated from a Y=Y + X 7=Y-X
counter starting at 1 Write(Y) Write(2)

e T1 goes first

Timestamp Example

T1 T2

Read(X) Read(X)

Read(Y) Read(Y)

=Y + =Y -
Y=Y+ X =Y -X T1 T2

Write(Y) Write(2)
TS

Timestamp Example

X Y Z
T1 T2 R

— Read(X) Read(X) w
Read(Y) Read(Y)
Y=Y+ X Z=Y-X T1 T2

Write(Y) Write(2)

TS| 1

Timestamp Example

XY Z
T1 T2 R12
— Read(X) — Read(X) W
Read(Y) Read(Y)
Y=Y+X Z=Y-X T1 T2

Write(Y) Write(2)
TS| 1|2

Timestamp Example

X Y
T1 T2 R12]1
Read(X) —Read(X) W
— Read(Y) Read(Y)
Y=Y+ X /Z=Y-X T1 T2

Write(Y) Write(2)
TS| 1|2

Timestamp Example

X Y
T1 T2 R12]2
Read(X) Read(X) w

— Read(Y) — Read(Y)

Y=Y+ X Z=Y-X T1 T2

Write(Y) Write(2)
TS| 1|2

Timestamp Example

X Y
T1 T2 R12]2
Read(X) Read(X) w
Read(Y) — Read(Y)

LY=Y+X Z=Y-X U

Write(Y) Write(2)
TS| 1|2

Timestamp Example

T1

Read(X)
Read(Y)
—Y=Y+X—=Z=Y-X

Write(Y)

T2

Read(X)
Read(Y)

Write(2)

TS

Timestamp Example

Read(X) Read(X) W

Read(Y) Read(Y)
Y=Y+X —Z=Y-X
— Write(Y) Write(2) T1 T2

TS| 1|2

Timestamp Example

—T1

Read(X)
Read(Y)
Y=Y+X —=Z=Y-X

Write(Y)

T2

Read(X)
Read(Y)

Write(2)

TS

Timestamp Example

— 11 T2

Read(X) Read(X)

Read(Y) Read(Y)
Y=Y+X Z=Y-X
Write(Y) — Write(2)

TS| 3|2

Timestamp Example

X Y
T1 T2 R1312
— Read(X) Read(X) w
Read(Y) Read(Y)
Y=Y+ X Z=Y-X T1 T2

Write(Y) Write(2)

TS| 3|2

Timestamp Example

X Y
T1 T2 RIS |3
Read(X) Read(X) w

— Read(Y) Read(Y)

Y=Y+ X Z=Y-X T1 T2

Write(Y) Write(2)

TS| 3|2

Timestamp Example

X Y
T1 T2 RIS |3
Read(X) Read(X) w
Read(Y) Read(Y)

—~Y=Y+X Z=Y-X U

Write(Y) Write(2)

TS| 3|2

Timestamp Example

X Y
T1 T2 RIS |3
Read(X) Read(X) W 3
Read(Y) Read(Y)

Y=Y+ X Z=Y-X T1 T2

— Write(Y) Write(2)

TS| 3|2

Timestamping

e The protocol means e Problems
that transactions - Long transactions
with higher times might keep getting

take precedence restarted by new

Equivalent t _ transactions -
quiva e_n o_ running starvation
transactions in order

of their final time = Rolls back old -
values transactions, whic

- , may have done a lot
e Transactions don’t

f k
wait - no deadlock or wor

	Example Algorithms
	Precedence Graph
	Waits for Graph
	Timestamping
	• Given a schedule, we can detect deadlocks which will happen in this schedule using a wait-for graph (WFG).
	• Wait-for Graph
	• Deadlocks can arise with 2PL
	• Conservative 2PL
	• We impose an ordering on the resources
	• This prevents deadlock
	• Suppose resource order is: X < Y
	• It is impossible to end up in a situation when T1 is waiting for a lock on X held by T2, and T2 is waiting for a lock on Y held by T1.
	• Each transaction has a timestamp, TS, and if T1 starts before T2 then TS(T1) < TS(T2)
	• Each resource has two timestamps
	• If T tries to read X
	• T tries to write X
	• Given T1 and T2 we will assume
	T1 T2
	• Problems

