
Recoverability
Kathleen Durant PhD
CS3200

1

Recovery Manager
• Recovery manager ensures the ACID principles of

atomicity and durability
• Atomicity: either all actions in a transaction

are done or none are done
• Durability: if a transaction is committed,

changes persist within the database
• Desired behavior

• keep actions of committed transactions
• discard actions of uncommitted transactions 2

Keep the committed
transactions

0
2
4
6
8

10

1 2 3 4

T1
T2
T3
T4

Commit

Commit

Throw away the active transactions
work
 T3 and T4 actions should appear in the database

 T1 and T2 actions should not appear in the database
3

Database Recovery
Process of restoring database to a correct state in the event
of a failure.

• Need for Recovery Control

• Two types of storage: volatile (main memory) and
nonvolatile.

• Volatile storage does not survive system crashes.
• Stable storage represents information that has

been replicated in several nonvolatile storage
media with independent failure modes.

Pearson Education © 2014

4

Types of Failures
• System crashes, resulting in loss of main memory.
• Media failures, resulting in loss of parts of secondary storage.
• Application software errors.
• Natural physical disasters.
• Carelessness or unintentional destruction of data or facilities.
• Sabotage.

Pearson Education © 2014

5

Transactions and Recovery
• Transactions represent basic unit of recovery.
• Recovery manager responsible for atomicity and

durability.
• If failure occurs between commit and database buffers

being flushed to secondary storage then, to ensure
durability, recovery manager has to redo (rollforward)
transaction’s updates.

Pearson Education © 2014 6

6

Transactions and Recovery
• If transaction had not committed at failure time, recovery

manager has to undo (rollback) any effects of that transaction
for atomicity.

• Partial undo - only one transaction has to be undone.
• Global undo - all transactions have to be undone.

Pearson Education © 2014 7

7

Buffer pool management
• FORCE – every write to

disk?
• Poor performance (many

writes clustered on same
page)

• At least this guarantees the
persistence of the data

• STEAL – allow dirty pages
to be written to disk?
• If so, reading data from

uncommitted transactions
violates atomicity

• If not, poor performance

Force -
every
write to
disk

No Force –
write when
optimal

Steal – use
internal DB
buffer for
read

Desired but
complicated

No Steal -
always read
only
committed
data

Easy but
slow

8

Complications from NO FORCE and
STEAL
• NO FORCE

• What if the system crashes before a modified page can
be written to disk?

• Write as little as possible to a convenient place at
commit time to support REDOing the data update

• STEAL
• Current updated data can be flushed to disk but still

locked by a transaction T1
• What if T1 aborts?
• Need to UNDO the data update done by T1 9

Recovery Facilities
• DBMS should provide following facilities to assist with recovery:

• Backup mechanism
• Makes periodic backup copies of database.

• Logging facilities
• Keeps track of current state of transactions and

database changes.
• Checkpoint facility

• Enables updates to database in progress to be made
permanent.

• Recovery manager
• Allows DBMS to restore database to consistent state

following a failure.

Pearson Education © 2014 10

10

Log File
• Collection of records that represent the history of actions

executed by the DBMS
• Contains information about all updates to database:

• Transaction records.
• Checkpoint records.

• Often used for other purposes (for example, auditing).

Pearson Education © 2014

11

Log File Data
• Transaction records contain:

• Transaction identifier.
• Type of log record, (transaction start, insert, update, delete,

abort, commit).
• Identifier of data item affected by database action (insert, delete,

and update operations).
• Before-image of data item.
• After-image of data item.
• Log management information (Transaction operation links)

Pearson Education © 2014 12

12

Write-ahead Logging
• The Write-Ahead Logging Protocol:

1. Must force the log record to permanent
storage before the corresponding data page
gets written to disk.

2. Must write all log records for a transaction
before commit.

• #1 guarantees Atomicity.
• #2 guarantees Durability.

13

Sample Log File

Pearson Education © 2014 14

14

Log File
• Log file may be duplexed or triplexed.
• Log file sometimes split into two separate random-access

files.
• Potential bottleneck; critical in determining overall

performance.

Pearson Education © 2014 15

15

Checkpointing
Checkpoint

Point of synchronization between database and log file. All
buffers are force-written to secondary storage.

• Checkpoint record is created containing identifiers of all
active transactions.

• When failure occurs:
• Redo all transactions that committed since the checkpoint and
• Undo all transactions active at time of crash.

Pearson Education © 2014 16

16

Checkpoint Example

• DBMS starts at time t0, but fails at time tf. Assume data for
transactions T2 and T3 have been written to secondary storage.

• T1 and T6 have to be undone. In absence of any other
information, recovery manager has to redo T2, T3, T4, and T5.

Pearson Education © 2014 17

17

Checkpointing
• In previous example, with checkpoint at time tc, changes

made by T2 and T3 have been written to secondary storage.
• Thus:

• only redo T4 and T5,
• undo transactions T1 and T6.

Pearson Education © 2014 18

18

Recovery Techniques
• If database has been damaged:

• Need to restore last backup copy of database and
reapply updates of committed transactions using
log file.

• If database is only inconsistent:
• Need to undo changes that caused inconsistency.

May also need to redo some transactions to
ensure updates reach secondary storage.

• Do not need backup version of the database, but
can restore database using before- and after-
images in the log file.

Pearson Education © 2014 19

19

Main Recovery Techniques
• Three main recovery techniques:

• Deferred Update
• Immediate Update
• Shadow Paging

Pearson Education © 2014 20

20

Deferred Update
• Updates are not written to the database until after a

transaction has reached its commit point.
• If transaction fails before commit, it will not have modified

database and so no undoing of changes required.
• May be necessary to redo updates of committed transactions

as their effect may not have reached database.

Pearson Education © 2014 21

21

Immediate Update
• Updates are applied to database as they occur.
• Need to redo updates of committed transactions following a

failure.
• May need to undo effects of transactions that had not

committed at time of failure.
• Essential that log records are written before write to

database. Write-ahead log protocol.

Pearson Education © 2014 22

22

Immediate Update
• If no “transaction commit” record in log, then that

transaction was active at failure and must be undone.
• Undo operations are performed in reverse order in which

they were written to log.

Pearson Education © 2014 23

23

Shadow Paging
• Maintain two page tables during life of a

transaction: current page and shadow page
table.

• When transaction starts, two pages are the
same.

• Shadow page table is never changed thereafter
and is used to restore database in event of
failure.

• During transaction, current page table records
all updates to database.

• When transaction completes, current page
table becomes shadow page table.

Pearson Education © 2014

24

Summary
• Recovery Manager guarantees Atomicity and Durability.
• Different recovery techniques available
• The recovery of a database is dependent on the type of

failure the database encountered
• If the current version of the database is not recoverable

use the log and a backup version of the database to get
the database to a consistent state

• If the current version of the database is recoverable and in
an inconsistent state then use the Log with the current
version of the database to recover from the failure.

• Checkpointing: A quick way to limit the amount of log to
scan on recovery

25

	Recoverability
	Recovery Manager
	Keep the committed transactions
	Database Recovery
	Types of Failures
	Transactions and Recovery
	Transactions and Recovery
	Buffer pool management
	Complications from NO FORCE and STEAL
	Recovery Facilities
	Log File
	Log File Data
	Write-ahead Logging
	Sample Log File
	Log File
	Checkpointing
	Checkpoint Example
	Checkpointing
	Recovery Techniques
	Main Recovery Techniques
	Deferred Update
	Immediate Update
	Immediate Update
	Shadow Paging
	Summary

