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Recovery Manager
• Recovery manager ensures the ACID principles of 

atomicity and durability
• Atomicity: either all actions in a transaction 

are done or none are done
• Durability: if a transaction is committed, 

changes persist within the database 
• Desired behavior 

• keep actions of committed transactions 
• discard actions of uncommitted transactions 2



Keep the committed 
transactions 

0
2
4
6
8

10

1 2 3 4

T1
T2
T3
T4

Commit

Commit

Throw away the active transactions 
work
 T3 and T4 actions should appear in the database

 T1 and T2 actions should not appear in the database 
3



Database Recovery
Process of restoring database to a correct state in the event
of a failure.

• Need for Recovery Control

• Two types of storage: volatile (main memory) and
nonvolatile.

• Volatile storage does not survive system crashes.
• Stable storage represents information that has

been replicated in several nonvolatile storage
media with independent failure modes.
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Types of Failures
• System crashes, resulting in loss of main memory.
• Media failures, resulting in loss of parts of secondary storage.
• Application software errors.
• Natural physical disasters.
• Carelessness or unintentional destruction of data or facilities.
• Sabotage.
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Transactions and Recovery
• Transactions represent basic unit of recovery.
• Recovery manager responsible for atomicity and

durability.
• If failure occurs between commit and database buffers

being flushed to secondary storage then, to ensure
durability, recovery manager has to redo (rollforward)
transaction’s updates.
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Transactions and Recovery
• If transaction had not committed at failure time, recovery

manager has to undo (rollback) any effects of that transaction
for atomicity.

• Partial undo - only one transaction has to be undone.
• Global undo - all transactions have to be undone.
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Buffer pool  management
• FORCE – every write to 

disk? 
• Poor performance (many 

writes clustered on same 
page) 

• At least this guarantees the 
persistence of the data

• STEAL – allow dirty pages 
to be written to disk?
• If so, reading data from 

uncommitted transactions 
violates atomicity

• If not, poor performance 
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Complications from NO FORCE and 
STEAL
• NO FORCE

• What if the system crashes before a modified page can 
be written to disk?

• Write as little as possible to a convenient place at 
commit time to support REDOing the data update

• STEAL
• Current updated data can be flushed to disk but still 

locked by a transaction T1
• What if T1 aborts?
• Need to UNDO the data update done by T1 9



Recovery Facilities
• DBMS should provide following facilities to assist with recovery:

• Backup mechanism
• Makes periodic backup copies of database.

• Logging facilities
• Keeps track of current state of transactions and

database changes.
• Checkpoint facility

• Enables updates to database in progress to be made
permanent.

• Recovery manager
• Allows DBMS to restore database to consistent state

following a failure.
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Log File
• Collection of records that represent the history of actions

executed by the DBMS
• Contains information about all updates to database:

• Transaction records.
• Checkpoint records.

• Often used for other purposes (for example, auditing).
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Log File Data
• Transaction records contain:

• Transaction identifier.
• Type of log record, (transaction start, insert, update, delete, 

abort, commit).
• Identifier of data item affected by database action (insert, delete, 

and update operations).
• Before-image of data item.
• After-image of data item.
• Log management information (Transaction operation links)
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Write-ahead Logging
• The Write-Ahead Logging Protocol:

1. Must force the log record to permanent 
storage before the corresponding data page 
gets written to disk.

2. Must write all log records for a transaction 
before commit.

• #1 guarantees Atomicity.
• #2 guarantees Durability.
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Sample Log File
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Log File
• Log file may be duplexed or triplexed.
• Log file sometimes split into two separate random-access

files.
• Potential bottleneck; critical in determining overall

performance.
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Checkpointing
Checkpoint

Point of synchronization between database and log file. All
buffers are force-written to secondary storage.

• Checkpoint record is created containing identifiers of all
active transactions.

• When failure occurs:
• Redo all transactions that committed since the checkpoint and
• Undo all transactions active at time of crash.
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Checkpoint Example

• DBMS starts at time t0, but fails at time tf. Assume data for
transactions T2 and T3 have been written to secondary storage.

• T1 and T6 have to be undone. In absence of any other
information, recovery manager has to redo T2, T3, T4, and T5.
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Checkpointing
• In previous example, with checkpoint at time tc, changes

made by T2 and T3 have been written to secondary storage.
• Thus:

• only redo T4 and T5,
• undo transactions T1 and T6.
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Recovery Techniques
• If database has been damaged:

• Need to restore last backup copy of database and
reapply updates of committed transactions using
log file.

• If database is only inconsistent:
• Need to undo changes that caused inconsistency.

May also need to redo some transactions to
ensure updates reach secondary storage.

• Do not need backup version of the database, but
can restore database using before- and after-
images in the log file.

Pearson Education © 2014 19

19



Main Recovery Techniques
• Three main recovery techniques:

• Deferred Update
• Immediate Update
• Shadow Paging
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Deferred Update
• Updates are not written to the database until after a

transaction has reached its commit point.
• If transaction fails before commit, it will not have modified

database and so no undoing of changes required.
• May be necessary to redo updates of committed transactions

as their effect may not have reached database.
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Immediate Update
• Updates are applied to database as they occur.
• Need to redo updates of committed transactions following a

failure.
• May need to undo effects of transactions that had not

committed at time of failure.
• Essential that log records are written before write to

database. Write-ahead log protocol.
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Immediate Update
• If no “transaction commit” record in log, then that

transaction was active at failure and must be undone.
• Undo operations are performed in reverse order in which

they were written to log.
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Shadow Paging
• Maintain two page tables during life of a

transaction: current page and shadow page
table.

• When transaction starts, two pages are the
same.

• Shadow page table is never changed thereafter
and is used to restore database in event of
failure.

• During transaction, current page table records
all updates to database.

• When transaction completes, current page
table becomes shadow page table.
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Summary
• Recovery Manager guarantees Atomicity and Durability.
• Different recovery techniques available
• The recovery of a database is dependent on the type of 

failure the database encountered
• If the current version of the database is not recoverable 

use the log and a backup version of the database to get 
the database to a consistent state

• If the current version of the database is recoverable and in 
an inconsistent state then use the Log  with the current 
version of the database to recover from the failure.

• Checkpointing: A quick way to limit the amount of log to 
scan on recovery
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