
Building host programs

Connecting to a MySQL database
Topic 4 Lesson 7

Adapted from Chapter 1

https://pymysql.readthedocs.io/en/latest/

https://dev.mysql.com/doc/connector-j/8.0/en/

https://dev.mysql.com/doc/connector-
python/en/connector-python-reference.html

https://pymysql.readthedocs.io/en/latest/
https://dev.mysql.com/doc/connector-j/8.0/en/
https://dev.mysql.com/doc/connector-python/en/connector-python-reference.html

Embedding SQL
SQL commands can be called from within a host language (e.g., C++ or Java) program.

SQL statements can refer to host variables (including special variables used to return
status).

Two main integration approaches:

• Embed SQL in the host language (Embedded SQL, SQLJ). A Preprocessor
converts SQL code to host language calls. The output from the preprocessor is then
compiled by the host compiler

• Create special API to call SQL commands

JDBC Java Database Connectivity API (for JAVA)
http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/

ODBC Standard database connectivity API Pep 249 – Python Database Application
specification https://www.python.org/dev/peps/pep-0249/

http://docs.oracle.com/javase/7/docs/technotes/guides/jdbc/

Embedded SQL

Mysqli or PDO JDBC
ADO.NET

Java Driver
Connector/J

.Net Driver
Connector/Net

MySQL

Database (API)s
Add a library with database calls (API)

Special standardized interface: procedures/objects
Pass SQL strings from host language, presents result sets in a host

language-friendly way

A “driver” traps the calls and translates them into DBMS
specific code (Oracle, MySQL, SQL Server etc.)

database can be across a network

GOAL: applications are independent of database systems
and operating systems

Download the desired driver

GO TO:
https://www.mysql.com/products/connector/

MySQL Drivers
• Connector/ODBC provides driver support for connecting to MySQL using the Open Database

Connectivity (ODBC) API.

• Connector/Net enables developers to create .NET applications that connect to MySQL.
Connector/Net implements a fully functional ADO.NET interface and provides support for use
with ADO.NET

• Connector/J provides driver support for connecting to MySQL from Java applications using the
standard Java Database Connectivity (JDBC) API.

• Connector/Python provides driver support for connecting to MySQL from Python applications
using an API that is compliant with the Python DB API version 2.0.
http://dev.mysql.com/doc/connector-python/en/

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/C is a standalone replacement for the MySQL Client Library (libmysqlclient), to be
used for C applications.

JDBC Processing (Java)

Steps to submit a database query:

Load the JDBC driver
Connect to the data source
Execute SQL statements

JDBC Architecture
Application or the client (initiates and terminates

connections, submits SQL statements)
Driver manager (loads the JDBC driver)
Driver (connects to data source, transmits requests and

returns/translates results and error codes)
Data source (processes SQL statements)

JDBC Driver Class
All drivers are managed by the Java DriverManager class

To load a JDBC driver in Java host code:
Class.forName(“oracle/jdbc.driver.Oracledriver”); /Oracle
Class.forName("com.mysql.jdbc.Driver"); /MySQL

When starting the Java application:
-Djdbc.drivers=oracle/jdbc.driver

Or provide the driver in the CLASSPATH directory

For a description of the flags that can be passed to driver:
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-reference-configuration-properties.html

Connecting to a DB via JDBC
Interact with a data source through sessions. Each connection identifies a logical session.

JDBC URL: jdbc:<subprotocol>:<otherParameters>
Example:
//Define URL of database server for
// database named mysql on the localhost
// with the default port number 3306.
String url =

"jdbc:mysql://localhost:3306/mysql";

//Get a connection to the database for a user named root with a xxxx password.
Connection con = DriverManager.getConnection(url,"root", “xxxx");
//Display URL and connection information
System.out.println("URL: " + url);
System.out.println("Connection: " + con);

Connection class interface
public int getTransactionIsolation() and

void setTransactionIsolation(int level)
Sets isolation level for the current connection.

public boolean getReadOnly() and void setReadOnly(boolean b)
Specifies whether transactions in this connection are readonly

public boolean getAutoCommit()
and void setAutoCommit(boolean b)

If autocommit is set, then each SQL statement is considered its own
transaction. Otherwise, a transaction is committed using commit(), or
aborted using rollback().

public boolean isClosed()
Checks whether connection is still open.

Executing SQL statements
Three different methods to execute SQL statements:

Statement (both static and dynamic SQL statements)
PreparedStatement (semi-static SQL statements)
CallableStatment (stored procedures)

PreparedStatement class: Precompiled, parameterized SQL
statements:

Structure of the SQL statement is fixed
Values of parameters are determined at run-time

Prepared stmt: pass and define arguments
String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;
PreparedStatment pstmt=con.prepareStatement(sql);
pstmt.clearParameters();
pstmt.setInt(1,sid);
pstmt.setString(2,sname);
pstmt.setInt(3, rating);
pstmt.setFloat(4,age);
// No return rows use executeUpdate()
int numRows = pstmt.executeUpdate();

Parameters are positional

Result set (cursor)
PreparedStatement.executeUpdate only returns the number

of affected records

PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);
// rs is now a cursor
While (rs.next()) {
// process the data }

ResultSet: Cursor with seek functionality
A ResultSet is a very powerful cursor:

previous(): moves one row back
absolute(int num): moves to the row with the specified number
relative (int num): moves forward or backward
first() and last()

Functionality not available for MySQL cursors

Java to SQL types and get methods
SQL Type Java class Result Set get method

BIT Boolean getBoolean()

CHAR String getString()

VARCHAR String getString()

DOUBLE Double getDouble()

FLOAT Double getDouble()

INTEGER Integer getInt()

REAL Double getFloat()

DATE Java.sql.Date getDate()

TIME Java.sql.Time getTime()

TIMESTAMP Java.sql.Timestamp getTimestamp()

JDBC: Processing errors and exceptions
Most of java.sql can throw an error and set SQLException

when an error occurs

An SQLException can occur both in the driver and the
database. When such an exception occurs, an object of type
SQLException will be passed to the catch clause.

SQLWarning is a subclass of SQLException
Not as severe as an error
They are not thrown
Code has to explicitly test for a warning

Example of try and catch for error handling
try {

stmt=con.createStatement();
warning=con.getWarnings();
while(warning != null) {

// handle SQLWarnings;
warning = warning.getNextWarning():

}
con.clearWarnings();
stmt.executeUpdate(queryString);
warning = con.getWarnings();

…
} //end try
catch(SQLException SQLe) {
// handle the exception
System.out.println(SQLe.getMessage());}

Examining meta data for the DB
DatabaseMetaData object gives information about the database
system catalog.

DatabaseMetaData md = con.getMetaData();
// print information about the driver:
System.out.println(

“Name:” + md.getDriverName() +
“version: ” + md.getDriverVersion());

Metadata- print out tables and fields
DatabaseMetaData md=con.getMetaData();
ResultSet trs=md.getTables(null,null,null,null);
String tableName;
While(trs.next()) {

tableName = trs.getString(“TABLE_NAME”);
System.out.println(“Table: “ + tableName);
//print all attributes
ResultSet crs = md.getColumns(null,null,tableName, null);
while (crs.next()) {

System.out.println(crs.getString(“COLUMN_NAME” + “, “);
}

}

http://docs.oracle.com/javase/10/docs/api/java/sql/DatabaseMetaData.html

Connect, Process, check for errors
Connection con = // connect

DriverManager.getConnection(url, ”login", ”pass");
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT name, rating FROM Sailors";
ResultSet rs = stmt.executeQuery(query);
try { // handle exceptions

// loop through result tuples
while (rs.next()) {

String s = rs.getString(“name");
Int n = rs.getFloat(“rating");
System.out.println(s + " " + n);

}
} catch(SQLException ex) {

System.out.println(ex.getMessage () +
ex.getSQLState () + ex.getErrorCode ());

}

Connect

Get multiset

Process with cursor

Catch Errors

Java documentation
For documentation refer to:
https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-

examples.html

https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-examples.html

Java Summary
APIs such as JDBC introduce a layer of abstraction between

application and DBMS
Embedded SQL allows execution of parameterized static

queries within a host language
Dynamic SQL allows execution of completely ad hoc queries

within a host language
Cursor mechanism allows retrieval of one record at a time

and bridges impedance mismatch between host language
and SQL

Building MySQL python applications

Topic 4 Lesson 8

Python database objects
2 main classes for processing database queries

Connection object
Connection to the database
Object created via the connection (.connection) method

Cursor object
Query statement execution

Method to execute a statement (.execute)
Result to the results

Method to retrieve row of data from the results (variations of fetch)
Cursor object created by the cursor method (.cursor) of the connection

object.
Method to run a MySQL procedure (.callproc)

Process for accessing database
1. Import the MySQL API module
2. Acquire a connection to a specific database
3. Issue SQL statements and stored procedures.
4. Close the connection

Database (API)s
Add a library with database calls (API)

Special standardized interface: procedures/objects
Pass SQL strings from host language, presents result sets in a host

language-friendly way

A “driver” traps the calls and translates them into DBMS
specific code (Oracle, MySQL, SQL Server etc.)

database can be across a network

GOAL: applications are independent of database systems
and operating systems

Python connection library
Mysqlclient: a wrapper around the mysql-connector-c C library.

You should have a development C environment set up to
compile C code to use this library.

Pymysql: pure python implementation. It tends to be available
quicker for the newer versions of python.

mysql-connection-python: Developed from the MySQL group at
Oracle. Another pure python implementation.

mysql-connector: Original connector from MySQL

Python mysql.connector example
#!/usr/bin/env python
-*- coding: utf-8 -*-

Simple MySQL database connection

import flask
import mysql.connector

def main(config):
output = []
cnx = mysql.connector.connect(**config)

cur = cnx.cursor()
cur2 = cnx.cursor()
reb = 'rebels'
movie_id = 1
stmt_select = "select * from characters order by character_name"

cur.execute(stmt_select)
for row in cur.fetchall():

output.append('{0:20s} {1:15s} {2:15s}
{3:15s}'.format(row[0], row[1], row[2], row[3]))

cur.close()

Python mysql.connector (cont.)
s2 = 'SELECT * FROM movies WHERE movie_id = {}'.format(movie_id)

cur2.execute(s2)
for row in cur.fetchall():

print(row)

cur2.callproc('track_planet', args=['Endor'])

for result in cur2.stored_results():
print(result.fetchall())

cur2.close()

return output

if __name__ == '__main__':
config = {

'host': 'localhost',
'port': 3306,
'database': 'starwarsfinal',
'user': 'root',
'password': 'root',
'charset': 'utf8',
'use_unicode': True,
'get_warnings': True,

}

out = main(config)
print('\n'.join(out))

Example pymysql (connect & retrieve data)
import pymysql

cnx = pymysql.connect(host='localhost', user='root', password='root',
db='lotrfinal', charset='utf8mb4',

cursorclass=pymysql.cursors.DictCursor)

cur = cnx.cursor()
stmt_select = "select * from lotr_character order by
character_name"

cur.execute(stmt_select)

rows = cur.fetchall()

Pymysql provides different cursors
Pymysql.cursors.SSDictCursor : an unbuffered cursor, useful

for queries that returns many rows or for connections on
remote servers. Instead of copying every row of data to the
buffer, this will fetch rows as needed

Pymyql.cursors.DictCursor: returns the result as a dictionary,
where the key is the field name and the value is the field
value

Pymysql.cursors.SSDictCursor: an unbuffered cursor, which
returns the results as a dictionary {field_name: field_value}

Example pymysql (process cursor)
for row in rows:

print(row) # prints each field as a key value pair
print(row["character_name"], row['species'])
#reference field by name
c_name_var = row["character_name"]
get specific values

cur.close()

Prepared statements
Any SQL statement can be made into a prepared statement

by using the character string %s to specify a value that will
be provided at execution time:

Example:

species = ‘elf’
cursor = cnx.cursor()
query = "SELECT character_name FROM lotr_character WHERE species=%s”
cursor.execute(query, species)
... retrieve data ...

Tuples affected by the query
The cursor method rowcount returns the number of tuples

affected or returned by the SQL statement. For example, if
cur is the cursor result of a SELECT statement

print("The query returned {} rows".format(cur.rowcount))

Prints the number of rows returned.

The query returned 2 rows

Starting Points
For pymysql:
https://pypi.org/project/PyMySQL/
https://www.tutorialspoint.com/python3/python_database_access.htm
https://pymysql.readthedocs.io/en/latest/modules/index.html

For mysqlclient-python:
https://pypi.org/project/mysqlclient/

For mysql-connection
https://dev.mysql.com/doc/connector-python/en/connector-python-

versions.html

For a comparison of the approaches
https://wiki.openstack.org/wiki/PyMySQL_evaluation

https://pypi.org/project/PyMySQL/
https://www.tutorialspoint.com/python3/python_database_access.htm
https://pymysql.readthedocs.io/en/latest/modules/index.html
https://pypi.org/project/mysqlclient/
https://dev.mysql.com/doc/connector-python/en/connector-python-versions.html
https://wiki.openstack.org/wiki/PyMySQL_evaluation

Python Summary
There are many different libraries for connecting a python

application to a MySQL database. Pymysql is written
entirely in python and does not require a C development
environment. It also provides 3 different types of cursor
objects.

Handling OUT and INOUT parameters to python from MySQL
requires the use of wrapper parameter that runs on the DB
server. It extracts the values from the session variables into
a cursor.

Building MySQL R applications

Topic 4 Lesson 9

R connection to the client server model
As of today, there is no standard driver to connect an R

program to a MySQL database
The DBI package separates the connectivity to the DBMS into

a “front-end” and a “back-end”. Applications use only the
exposed front-end API. The back-end facilities that
communicate with specific DBMSs (SQLite, MySQL,
PostgreSQL, MonetDB, etc.) are provided by drivers (other
packages) that get invoked automatically through R’s S4
methods.

R to MySQL
There are a few packages that do connect a R script to a

MySQL database, RMySQL, RODBC, RMariaDB and
RJDBC. (RMariaDB and RMySQL are supported) – both
provide the same interface. All such libraries automatically
include the DBI package.

Just like any other R package you must install the package
locally so we can access its methods from our R script

Installing RMySQL
Issue the

command:
install.packages
("RMySQL") to
install

You can also use
the packages
tab to install the
library with the
popup window

Connecting to the database
We use the dbConnect method to connect to the database.

You need to provide your credentials, the hostname of the
database and the port to connect. It returns an object with
class MySQLConnection

EXAMPLE:
library(RMySQL)
mydb = dbConnect(MySQL(), user='user',

password='password', dbname='database_name',
host='host’, port = 3306)

Documentation can be found:
https://cran.rproject.org/web/packages/RMySQL/RMySQL.pdf

https://cran.rproject.org/web/packages/RMySQL/RMySQL.pdf

Requesting and Accessing data
REQUEST data: dbSendQuery(con, sql) will retrieve data

from the database a chunk at a time.

Parameters:
con is the value returned from DbConnect
sql is the query you wish to run on the database

Output: returns a MySQLConnection class

Accessing the requested data
ACCESS data: dbFetch(MySQLResult, n)
Parameters:

MySQLResult is the return variable from dbSendQuery
n maximum number of records to retrieve

Clean up: when done with the results free the allocated space
with dbClearResult(res)

Requesting and Accessing data
REQUEST:dbGetQuery(con, sql) will retrieve data from the

database
con parameter is the value returned from DbConnect
sql parameter is the query you wish to run on the database

It will automatically fetch all data locally and clear the space
for the data. This should be used when the size of the
returning data is small (will not exceed virtual memory of R
program).

Example code (1)
library(RMySQL)
library(tidyverse)
globalUsername <- "root"
globalPass <- ”password"

1Settings
db_user <- 'root'
db_password <- ‘password'
db_name <- 'lotrfinal_1'

db_host <- '127.0.0.1' # for local access
db_port <- 3306

2. Connect to the db
mydb <- dbConnect(MySQL(), user = db_user, password = db_password,

dbname = db_name, host = db_host, port = db_port)

Example code (2)
db_table <- 'lotr_character'

s <- str_c("select * from ", db_table)
2. Read from the db

rs <- dbSendQuery(mydb, s)
df <- fetch(rs, n = -1) #-1 represents to read all data
df
dbClearResult(rs)
dbDisconnect(mydb)

Example code (3)
fetch chunks of data when dealing with large results

res <- dbSendQuery(con, "SELECT * FROM lotr_character")
while(!dbHasCompleted(res)){
chunk <- dbFetch(res, n = 5)
print(chunk)
print("Next chunk")
print(nrow(chunk))

}
dbClearResult(res)

Reading a table from the database
You can read a table from the database.

dbReadTable(con, name, row.names, check.names = TRUE,
...)
con – DBConnect object
name – name of the table
row.names - A string or an index specifying the column in the DBMS table to use
as row.names in the output data.frame. Defaults to using the row_names column
if present. Set to NULL to never use row names.

check.names - if TRUE, the default, column names will be converted to valid R
identifiers

Writing a data frame to the database
You can write a data frame as a table to the database. This is

useful for storing a data frame to permanent storage.

dbWriteTable(conn, name, value, field_types = NULL,
row_names = TRUE, overwrite = FALSE, append = FALSE,
..., allow.keywords = FALSE)

con – DBConnect object
name – name of the table
value data frame to be stored as the table

Package RMariaDB
• For compatibility, the functions for connecting, retrieving

and storing data in the database are the same as RMySQL.
• It also provides functions for managing transactions
• The data structures have different classes in the RMariaDB

package the object returned from connect is a
MariaDBConnection object

• MariaDBResult objects are returned from dbGetQuery.
• Please refer to the documentation:

https://cran.r-project.org/web/packages/RMariaDB/RMariaDB.pdf
A full tutorial can be found at
https://programminghistorian.org/en/lessons/getting-started-with-mysql-using-
r#selecting-data-from-a-table-with-sql-using-r

https://cran.r-project.org/web/packages/RMariaDB/RMariaDB.pdf
https://programminghistorian.org/en/lessons/getting-started-with-mysql-using-r

Summary
• R has the data frame object that an analogous to the

structure of a relational table. We use a data frame object
to accept data or pass data to/from the database.

• The MySQLConnection class is the object that tracks all
information necessary for a connection (RMySQL)

• The MySQLResult class is the object that represents the
data retrieved from the database (RMySQL)

