
Data Redundancy & Normal Form

Topic 3, Lesson 8
Schema Refinement

Chapter 14 14.1-14.4 Connolly and Begg

Functional Dependencies

Reducing Data Redundancy
Major aim of relational database design is to group attributes

into relations to minimize data redundancy.
Benefits:

Updates to the data stored in the database are achieved
with a minimal number of operations thus reducing the
opportunities for data inconsistencies.

Reduction in the file storage space required by the base
relations thus minimizing costs.

What is wrong with this table?

Data redundancy of the branch address

Data redundancy leads to update anomalies
Relations that contain redundant information may potentially suffer from
update anomalies.
What are update anomalies?

• Insertion anomaly
• Tuple being inserted may contain data fields that are inconsistent

with data in other tuples in the table
• Deletion anomaly

• Deleting a tuple leads to loss of information other than the tuple
• Modification anomaly

• Modification of one tuple is dependent on the modifications of other
tuples

Functional dependency
Important concept associated with normalization.
Functional dependency describes a relationship between

attributes.
For example, if A and B are attributes of relation R, B is

functionally dependent on A (denoted A → B), if each value
of A in R is associated with exactly one value of B in R.

Types of Functional Dependencies
Full functional dependency indicates that if A and B are

attributes of a relation, B is fully functionally dependent on
A, if B is functionally dependent on A, but not on any proper
subset of A.

Partial dependency if B is also functionally dependent on a
subset of A.

Transitive dependency
Important to recognize a transitive dependency because its

existence in a relation can potentially cause update
anomalies.

Transitive dependency describes a condition where A, B, and
C are attributes of a relation such that if A → B and B → C,
then C is transitively dependent on A via B (provided that A
is not functionally dependent on B or C).

Let’s remove the redundancy

A staff table and a branch table

branchNo bAddress

B005 22 Deer Rd, London

B007 16 Argyll St, Aberdeen

B003 163 Main St, Glasgow

Reconfigure tables

A staff table and a branch table

Redundancy only for the foreign key

branchNo bAddress
B005 22 Deer Rd, London
B007 16 Argyll St, Aberdeen
B003 163 Main St, Glasgow

staffNo sName position salary branchNo
SL21 John White Manager 30000 B005
SG37 Ann Beech Assistant 12000 B003
SG14 David Ford Supervisor 18000 B003
SA9 Mary Howe Assistant 9000 B007
SG5 Susan Brand Manager 24000 B003
SL41 Julie Lee Assistant 9000 B005

Example of transitive dependency
Consider functional dependencies in the StaffBranch relation

StaffNo → sName, position, salary, branchNo, bAddress
branchNo → bAddress

Transitive dependency, StaffNo → branchNo
branchNo → bAddress

Transitive dependency staffNo to bAddress via branchNo.

Redundancy leads to anomalies

UPDATE ANOMALIES

Modification anomaly: Can
we change W in just the first
tuple?
Deletion anomaly: Can we
delete tuple 3 and 4?
Insertion anomaly: What if
we insert another tuple where
the rating equals 8 but the
wage is not equal to 10?
How do we track the wage
associated with ratings not
stored in the employee table?

There is a functional dependency between Rate and
Wage. This functional dependency limits the operations I
can do on my data if I want to keep my data consistent.

Identifying functional dependencies
Functional dependencies, can be used to identify schemas with such
problems and to suggest schema refinements.
Each relation is dependent on the primary key since the primary key
identifies the values for the other attributes
In our prior example, we had 2 functional dependencies (FDS)

S → {S,N,L,R,W,H}
R → {W} - each value of R is associated with exactly 1 value of W
Determinant on left hand side of →

If no attributes are dependent on another (not including the primary key)
then there is no redundancy

How to remove a functional dependency?

Decompose the original
relation into 2 relations. Wage

Example: Find the functional dependencies

Given these values:

fd5

Identified functional dependencies

Function dependencies between attributes A to E in the
Sample relation.

A → C (fd1)
C → A (fd2)
B → D (fd3)
A, B → E
B, C → E

(fd4)
(fd5)

Candidate keys for sample relation
A candidate key must provide the irreducibility and

uniqueness property. We do not have 1 attribute that can
determine all attributes.

A,B determines C, D, and E
B,C determines A, D, and E

So we have 2 candidate keys.

Identifying functional dependencies
Main characteristics of functional dependencies used in

normalization:
• There is a one-to-one relationship between the

attribute(s) on the left-hand side (determinant) and
those on the right-hand side of a functional
dependency.

• Holds for all time.
• The determinant has the minimal number of attributes

necessary to maintain the dependency with the
attribute(s) on the right hand-side.

Decomposition properties
Decomposition process must ensure:

• Lossless-join property enables us to find any instance
of the original relation from corresponding instances in
the smaller relations.

• We can still generate the original table from the decomposed
tables (no loss of information)

• Dependency preservation property enables us to
enforce a constraint on the original relation by enforcing
some constraint on each of the smaller relations

• No functional dependency is lost in the process

Lossless Join Property guarantees that
• The union of the attributes in the 2 smaller tables must be

equal to the attributes in the larger table
• The intersection of the attributes in the 2 smaller tables

must not be empty
• A common attribute in one of the relations must be a key in

the other table

Summary
Functional dependency not involving a candidate key can

lead to update anomalies
Update anomalies can lead to data inconsistencies
Schema refinement using the normalization process can

resolve update anomalies

Normal Form

Topic 3 Lesson 9
Removing redundancy from a data schema

Chapter 14 14.5-14.9 Connolly and Begg

Normalization process
Formal technique for analysing a relation based on its primary

key and the functional dependencies between the attributes
of that relation.

We use the normalization process as a validation technique for
the defined relations.

It is a crucial step in the logical database design process.

Normalization

Normalization identifies redundancy that leads to functional
dependency.
The normalization process is a series of tests that help identify
the optimal grouping of attributes to relations.

GOAL: reduce data redundancy

Normal form addresses dependencies
• GOAL: Free the collection of relations from undesirable insertion,

modification and deletion dependencies
• If schema has duplicated data in multiple rows

• Forced to update/delete all copies of a piece of data
• How do you know you got all copies of it?

• Address the flaws in the current design

Normal form leads to a cleaner schema
• Reduce the need for restructuring the collection of relations

• Build an extensible design now as opposed to later
• Make the relational model more informative to users

• Cleaner model should be easier to understand
• Make the collection of relations neutral to the query statistics

• Designed for general purpose querying

Unnormalized form
• No primary key or NULL values in the primary

key fields
• A table that contains an attribute with one or

more repeating groups or contains a set
• A repeating group is a set of logically related

fields or values that occur multiple times in one
record.

• Attributes need not be atomic

Unnormalized form

Table to track
birth mother to
child

Set of children
to a mother

One field to
represent all
children

UNNORMALIZED FORM (UNF) – DUPLICATES ENTITIES

Mother
Id

Mother
Name

Children

1 Elsa Alex

1 Elsa Mary Alice Tom Lou

2 Golda George Fred

3 Viola Ava

4 Iris Kayla

5 Daisy Harry

Does this solve the problem?

No, but it does
not stop
people from
designing
databases this
way

Still
unnormalized

Mother
Id

Mother
Name

Child1 Child2 Child3 Child4

1 Elsa Alex NULL NULL NULL

1 Elsa Mary Alice Tom Lou

2 Golda George Fred NULL NULL

3 Viola Ava NULL NULL NULL

4 Iris Kayla NULL NULL NULL

5 Daisy Harry NULL NULL NULL

First normal form
• Tuples in a relation must contain the same

number of fields
• The domain of each attribute contains

atomic values
• The value of each attribute contains only a

single value
• No attributes are sets or a repeating

group.

Relational
Model

1st normal
form

UNF to 1NF
• Nominate an attribute or group of attributes to act as the

key for the unnormalized table.
• Identify the repeating group(s) in the unnormalized table

which repeats for the key attribute(s).
• Remove the set by creating a separate table for the set or if there is

an upper limit to the set you can flatten it into fields

1st Normal Form

Decompose table, remove repeating
attributes

Mother Id Mother
Name

1 Elsa

2 Golda

3 Viola

4 Iris

5 Daisy

Child
Id

Name Mother

11 Mary 1

12 Alice 1

13 George 2

14 Fred 2

15 Ava 3

16 Kayla 4

17 Harry 5

18 Alex 1

19 Tom 1

20 Lou 1

Second normal form
• Requirement for tables that have a composite key
• Table must already be in first normal form
• Every non-primary key attribute is fully functionally

dependent on the (entire) primary key
• A table in first normal form and having a primary key

with only one field is also in 2nd normal form

Second normal form
Based on the concept of full functional dependency.
Full functional dependency indicates that if

A and B are attributes of a relation,
B is fully dependent on A if B is functionally dependent on

A but not on any proper subset of A.

1NF to 2NF
Identify the primary key for the 1NF relation.
Identify the functional dependencies in the relation.
If partial dependencies exist on the primary key

remove them by placing then in a new relation
along with a copy of their determinant.

Example 2NF with a composite key
1st Normal Form but NOT 2nd NORMAL FORM
Mother Id First

Name
Last
Name

Hospital Hospital
Address

1 Elsa General BIDMC Boston

2 Golda Major MGH Boston

3 Viola Funt TMC Cambridge

4 Iris Batter BIDMC Brighton

5 Daisy Mae Mayo Allston

2nd NORMAL FORM

Mother
Id

First
Name

Last
Name

Hospital
Id

1 Elsa General 1

2 Golda Major 2

3 Viola Funt 3

4 Iris Batter 1

5 Daisy Mae 4

2nd NORMAL FORM

Hospital ID Hospital Hospital
Address

1 BIDMC Boston

2 MGH Boston

3 TMC Cambridge

4 Mayo Allston

Third normal form
• Table is in first and second normal form
• No dependencies between 2 non-key attributes
• No non-primary-key attribute is transitively dependent on the

primary key
• Solution: decompose the table so that the offending attribute

is in a separate table
• Attribute is fully functionally dependent on the primary key

Third normal form
Based on the concept of transitive dependency.
Transitive Dependency is a condition where

A, B and C are attributes of a relation such that if A → B
and B → C,

then C is transitively dependent on A through B. (Provided
that A is not functionally dependent on B or C).

2NF to 3NF
• Identify the primary key in the 2NF relation.
• Identify functional dependencies in the relation.
• If transitive dependencies exist on the primary key remove

them by placing them in a new relation along with a copy of
their dominant.

Example: to 3rd normal form
2nd NORMAL FORM

Mother Id First
Name

Last
Name

Hospital
Id

Room
Number

1 Elsa General 1 36

2 Golda Major 2 48

3 Viola Funt 3 36

4 Iris Batter 1 41

5 Daisy Mae 4 32

3rd NORMAL FORM
Mother
Id

First
Name

Last
Name

Register Id

1 Elsa General 1

2 Golda Major 2

3 Viola Funt 3

4 Iris Batter 4

5 Daisy Mae 5

3rd Normal Form

Register
Id

Hospital
Id

Room
Id

1 1 36

2 2 48

3 3 36

4 1 41

5 4 32

Bill Kent’s quote:

Every non-key attribute must provide a fact :

about the key,

the whole key

and nothing but the key

Summary
To remove unnecessary redundancy, a table needs to be
decomposed and the redundancy should be broken out into a
separate table.

Practice work with the database design process

Topic 3 Lesson 10 Applying the database design process

Practice problem: university
A university consists of a number of departments. Each department offers
several majors. A number of courses make up each major. Students declare
a particular major and take courses towards the completion of that major.
Each course is taught by a lecturer from the appropriate department, and
each lecturer tutors a group of students

Example: entities
• A university consists of a number of departments. Each department

offers several majors. A number of courses make up each major.
Students declare a particular major and take courses towards the
completion of that major. Each course is taught by a lecturer from the
appropriate department, and each lecturer tutors a group of students

Example: relationships
• A university consists of a number of departments. Each department

offers several majors. A number of courses make up each major.
Students declare a particular major and take courses towards the
completion of that major. Each course is taught by a lecturer from the
appropriate department, and each lecturer tutors a group of students

Entities:

Course Dept

Major Lecturer

Student

How do we add:
Department offers courses

Univer.

Relationships:

Course Dept

Major Lecturer

Student

How do we add:
Department offers courses

Univer.

Offers

All relationships

Course
Dept

Major Lecturer

Student

Is part of

Univer.

Offers

Consists of

Works for

Offe
rs

Takes

Declare

Tutor

Multiplicities

Course
Dept

Major Lecturer

Student

Is part of

Univer.

Offers

Consists of

Works for

1..1

1..*

1..1

1..*

1..1 1..1

Offe
rs

1..*

1..*1..*

1..*
Takes

1..*

1..*

Declare 0..1

0..*

Tutor

1..*

1..1

Primary keys are needed

Course

cid {PK}
Dept

did {PK}

Major

mid {PK}

Lecturer

lid {PK}

Student

sid {PK}

Is part of

Univer

uid {PK}

Offers

Consists of

Works for

1..1

1..*

1..1

1..*

1..1 1..1

Offe
rs

1..*

1..*1..*

1..*
Takes

1..*

1..*

Declare 0..1

0..*

Tutor

1..*

1..1

Enhanced relationships

Course

cid {PK}

Dept

did {PK}

Major

mid {PK}

Lecturer

lid {PK}

Student

sid {PK}

Is part of

Univer

uid {PK}

Offers

Consists of

Works for

1..1

1..*

1..1

1..*

1..1 1..1

Offe
rs

1..*

1..*1..*

1..*
Takes

1..*

1..*

Declare 0..1

0..*

Tutor

1..*

1..1

One solution

Course

cid {PK}
Dept

did {PK}

Major

mid {PK}

Lecturer

lid {PK}

Student

sid {PK}

Is part of

Univer

uid {PK}

Offers

Consists of

Works for

1..1

1..*

1..1

1..*

1..1 1..1

Offe
rs

1..*

1..*1..*

1..*
Takes

1..*

1..*

Declare 0..1

0..*

Tutor

1..*

1..1

Practice problem: musicians
Notown Records has decided to store information about musicians who perform on its albums (as well as other company

data) in a database.

Each musician that records at Notown has an SSN, a name, an address, and a phone number. Poorly paid musicians do
not have cell phones, often share the same address, and no address has more than one landline phone. Given their
limited use, cell phones are not tracked.

Each instrument used in songs recorded at Notown has a unique identification number, a name (e.g., guitar, synthesizer,
flute) and a musical key (e.g., C, B-flat, E-flat).

Each album recorded on the Notown label has a unique identification number, a title, a copyright date, a format (e.g., CD or
MC), and an album identifier.

Each song recorded at Notown has a title and an author. The author of a song is a musician. There is 1 and only 1 author
per song.

Each musician may play several instruments, and a given instrument may be played by several musicians.
Each album has a number of songs on it, but no song may appear on more than one album.
Each song is performed by one or more musicians, and a musician may perform a number of songs.
Each album has exactly one musician who acts as its producer. A musician may produce several albums, of course.
Design a conceptual schema for Notown and draw an UML diagram for your schema. Be sure to indicate all key and

multiplicity constraints and any assumptions you make. Once you have created the diagram, create the necessary SQL
CREATE TABLE commands necessary to support it.

Identify the entities
Each musician that records at Notown has an SSN, a name, an address, and a phone number. Poorly

paid musicians do not have cell phones, often share the same address, and no address has more than
one landline phone. Given their limited use, cell phones are not tracked.

Each instrument used in songs recorded at Notown has a unique identification number, a name (e.g.,
guitar, synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album recorded on the Notown label has a unique identification number, a title, a copyright date, a
format (e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author. The author of a song is a musician. There is 1
and only 1 author per song.

Each musician may play several instruments, and a given instrument may be played by several musicians.
Each album has a number of songs on it, but no song may appear on more than one album.
Each song is performed by one or more musicians, and a musician may perform a number of songs.
Each album has exactly one musician who acts as its producer. A musician may produce several albums,

of course.

Identify the relationships
Each musician that records at Notown has an SSN, a name, an address, and a phone number. Poorly

paid musicians do not have cell phones, often share the same address, and no address has more than
one landline phone. Given their limited use, cell phone numbers are not tracked.

Each instrument used in songs recorded at Notown has a unique identification number, a name (e.g.,
guitar, synthesizer, flute) and a musical key (e.g., C, B-flat, E-flat).

Each album recorded on the Notown label by a musician has a unique identification number, a title, a
copyright date, a format (e.g., CD or MC), and an album identifier.

Each song recorded at Notown has a title and an author. The author of a song is a musician. There is 1
and only 1 author per song.

Each musician may play several instruments, and a given instrument may be played by several musicians.
Each album contains a number of songs, but no song may appear on more than one album.
Each song is performed by one or more musicians, and a musician may perform a number of songs.
Each album has exactly one musician who acts as its producer. A musician may produce several albums,

of course.

Conceptual design
We need both authors and

performs between musician and
song to capture both
relationships

Alternatively authors and producers
could have been a subclass of
musician

We chose to make address a
separate entity since many
musicians may live at the same
address

Conceptual Model to SQL tables?
• Identify the tables for the entities
• Identify the tables for the relationships
• Identify the table name, field names and data types
• Identify the primary keys
• Identify the foreign keys

• Determine behavior for DELETE/UPDATE operations
• Represent other column and table constraints

• NULL allowed for field?
• Default value for a field?

Tables for entities with foreign keys
CREATE TABLE address

(phone CHAR(11) PRIMARY KEY,
Street VARCHAR(64) NOT NULL ,
City VARCHAR(64) NOT NULL,
State CHAR(2) NOT NULL,

);

CREATE TABLE musician
(ssn INT PRIMARY KEY,
name VARCHAR(64) NOT NULL,
phone CHAR(11) DEFAULT “NOT KNOWN”,
CONSTRAINT musician_address_fk FOREIGN KEY (phone)

REFERENCES address(phone)
ON DELETE SET DEFAULT,
ON UPDATE SET DEFAULT

);

CREATE TABLE instrument
(instrumentid INT PRIMARY KEY,
name VARCHAR(64) NOT NULL,
musicalkey VARCHAR(64)
);

CREATE TABLE album
(albumid INT AUTO_INCREMENT PRIMARY KEY,
releasedate DATE NOT NULL,
formattype char(8) NOT NULL,
producer INT NOT NULL,
FOREIGN KEY (producer) REFERENCES musician(ssn)
ON UPDATE CASCADE ON DELETE CASCADE

);

CREATE TABLE song
(songid INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(128) NOT NULL,
author INT NOT NULL,
albumid INT NOT NULL,
FOREIGN KEY (albumid) REFERENCES album(albumid)
ON UPDATE RESTRICT ON DELETE RESTRICT,

FOREIGN KEY (author) REFERENCES musician(ssn)
ON UPDATE RESTRICT ON DELETE RESTRICT

);

Tables for the many to many relationships
-- mapping tables to support the multiple artists

on a song
CREATE TABLE performs
(artist INT,
song INT,
PRIMARY KEY (artist,song),
FOREIGN KEY (artist) REFERENCES
musician(ssn)
ON UPDATE RESTRICT ON DELETE
RESTRICT,

FOREIGN KEY (song) REFERENCES
song(songid)
ON UPDATE RESTRICT ON DELETE
RESTRICT
);

-- mapping table to support the multiple
instruments a musician can play

CREATE TABLE musiciantoinstrument
(instrumentid INT,

artist INT,
PRIMARY KEY (instrumentid,artist),
FOREIGN KEY (instrumentid)
REFERENCES instrument(instrumentid)

ON UPDATE RESTRICT ON DELETE
RESTRICT,
FOREIGN KEY (artist) REFERENCES
musician(ssn)

ON UPDATE RESTRICT ON DELETE
RESTRICT
);

Practice with normal form

Practice problem: normalization (1)
Determine if table is unnormalized, 1st, 2nd, 3rd normal form

BuildingNo RoomNo RoomCapacity BuildingName

1 100 20 Behrakis

1 200 40 Behrakis

1 300 30 Behrakis

2 100 30 International
Village

1st Normal Form

Practice problem: normalization (2)
Determine if table is unnormalized, 1st, 2nd, 3rd normal form

StudentNo StudentName Courses

1 Jane Smith CS2500 CS3200 CS4100

2 Henry Wu

3 Miles Standish CS2500 CS2510 CS3000

4 Elizabeth Khan CS2500 CS2510

Unnormalized

Practice problem: normalization (3)
Determine if table is unnormalized, 1st, 2nd, 3rd normal form

BuildingNo Abbreviation BuildingName

1 BRK Behrakis

1 WVH West Village H

1 NI Nightingale Hall

2 RY Ryder Hall

3rd Normal Form

Practice problem: normalization (4)
Determine if table is unnormalized, 1st, 2nd, 3rd normal form

StudentNo FirstName LastName

1 Jane Smith

2 Henry Wu

3 Miles Standish

4 Elizabeth Khan

3rd Normal Form

Practice problem: normalization (5)
Determine if table is unnormalized, 1st, 2nd, 3rd normal form

BuildingNo RoomNo Abbreviation BuildingName

1 100 BRK Behrakis

1 200 WVH West Village H

1 300 NI Nightingale Hall

2 100 RY Ryder Hall

1rd Normal Form

Practice problem: functional dependency (1)
Do you suspect a functional dependency that should not be in

this table? If so which fields?
Item_id Item_type Color Item_description

1 hoodie white Comfortable 100%
cotton sweatshirt

2 hoodie black Comfortable 100%
cotton sweatshirt

3 jeans blue Acid-washed, slim cut

4 jeans black Acid-washed, slim cut

5 hoodie blue Comfortable 100%
cotton sweatshirt

6 jeans blue Acid-washed, slim cut

Item type à item_description

Practice problem: functional dependency (2)
Do you suspect a functional dependency that should not be in

this table? If so which fields?
Item_id Item_type Color Item_description

1 hoodie white Comfortable 100%
cotton sweatshirt

2 hoodie white Comfortable 100%
cotton sweatshirt

3 jeans blue Acid-washed, boot cut

4 jeans blue Acid-washed, slim cut

5 hoodie white Comfortable 100%
cotton sweatshirt

6 jeans blue Acid-washed, slim cut

Item_type à color

Practice problem: functional dependency (3)
Do you suspect a functional dependency that should not be in

this table? If so which fields?
Item_id Item_type Color Item_description

1 hoodie white Comfortable 100% cotton sweatshirt,
medium weight

2 hoodie red Comfortable 100% cotton sweatshirt,
heavy weight

3 jeans black Acid-washed, boot cut

4 jeans blue Acid-washed, slim cut

5 hoodie red Comfortable 100% cotton sweatshirt,
heavy weight

6 jeans blue Acid-washed, slim cut

Item_type, color à item_description

