
Hash Index Example
Extendible Hash

Kathleen Durant PhD
Northeastern University
CS 3200

Hashing mechanism
• Your index is a collection of buckets (bucket =

page)
• Define a hash function, h, that maps a key to a

bucket.
• Store the corresponding data in that bucket.
• Collisions

• Multiple keys hash to the same bucket.
• Store multiple keys in the same bucket.

• What do you do when buckets fill?
• Chaining: link new pages(overflow pages) off the bucket.

2

Extendible Hashing
• Main Idea: Use a directory of (logical) pointers to

bucket pages
• Situation: Bucket (primary page) becomes full.

Why not re-organize file by doubling # of buckets?
• Reading and writing all pages is expensive

• Idea: Use directory of pointers to buckets, double # of buckets
by doubling the directory, splitting just the bucket that
overflowed
• Directory much smaller than file, so doubling it is much cheaper.

Only one page of data entries is split. No overflow page!
• Trick lies in how hash function is adjusted!

3

Example
• Directory is array of size 4.
• To find bucket for r, take last

`global depth’ # bits of h(r);
we denote r by h(r).
• If h(r) = 5 = binary 101, it

is in bucket pointed to by
01.

 Insert: If bucket is full, split it (allocate new page, re-distribute).

 If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Insert h(r)=20 (Causes Doubling)

20*

00
01
10
11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000
001
010
011
100
101

110
111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

5

Points to Note
• 20 = binary 10100. Last 2 bits (00) tell us r belongs

in A or A2. Last 3 bits needed to tell which.
• Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.
• Local depth of a bucket: # of bits used to determine if an

entry belongs to this bucket.
• When does bucket split cause directory doubling?

• Before insert, local depth of bucket = global depth. Insert
causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!) 6

Directory Doubling

00

01
10

11

2

Why use least significant bits in directory?
 Allows for doubling via copying!

000

001
010

011

3

100

101
110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10
01

11

2

3

0

1

1

6*
6* 6*

6 = 110
000

100
010

110

001

101
011

111

Least Significant Most Significant
7

Comments on Extendible
Hashing
• If directory fits in memory, equality search answered with one

disk access; else two.
• 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as

data entries) and 25,000 directory elements; chances are high that
directory will fit in memory.

• Directory grows in spurts, and, if the distribution of hash values is
skewed, directory can grow large.

• Multiple entries with same hash value cause problems
• Need a decent hash function

• Delete: If removal of data entry makes bucket empty, can be
merged with `split image’. If each directory element points to
same bucket as its split image, can halve directory.

8

Hash index limitations
• They are used only for equality comparisons

• They cannot be used for comparison operators such as < that
find a range of values.

• The optimizer cannot use a hash index to speed up ORDER
BY operations. (This type of index cannot be used to search for
the next entry in order.)

• MySQL cannot determine approximately how many rows
there are between two values (this is used by the range
optimizer to decide which index to use).

• Only whole keys can be used to search for a row. (With a B+-
tree index, any leftmost prefix of the key can be used to find
rows.) 9

	Hash Index Example Extendible Hash
	Hashing mechanism
	Extendible Hashing
	Example
	Insert h(r)=20 (Causes Doubling)
	Points to Note
	Directory Doubling
	Comments on Extendible Hashing
	Hash index limitations

