
DS5010
Intro to programming for Data Science
LECTURE 1

TODAY
 syllabus overview

 house and alias name assignments

 basic python objects

 basic operations

 variables and types

 rules of sum and product

 branching and conditionals

Syllabus
 you can access the full syllabus here:

https://rahiminasab.github.io/DS5010F19/

https://rahiminasab.github.io/DS5010F19/

House and Alias name Assignments
 students in this class will be divided into 5 Houses:
 Stark
 Baratheon
 Lannister
 Targaryen
 Martell

 each student will also get an alias name which are chosen from GOT character names.

 students will participate in HackerRank contests with a username derived from their alias
names.

 a script written in Python will do the assignments and emails the students their assigned,
House, alias name, and username.

Python vs English as a language
 primitive constructs

◦ English: words.
◦ programming language: numbers, strings, simple operators.

Word Cloud copyright Michael Twardos, All Right Reserved.

https://www.blogger.com/profile/13059549809775325178

Python vs English as a language
 syntax

• English: ”cat dog boy” → not syntactically valid
”cat hugs boy” → syntactically valid

• programming language: +"hi"5 → not syntactically valid
3.2*5 → syntactically valid

Python vs English as a language
 static semantics is which syntactically valid strings have meaning

• English: "I are hungry" → syntactically valid but with static semantic error

• programming language: 3.2*5 → syntactically valid
3+"hi" → static semantic error

Python vs English as a language
 semantics is the meaning associated with a syntactically correct string of symbols with no
static semantic errors
• English: can have many meanings "Flying planes can be dangerous“
• programming languages: have only one meaning but may not be what programmer intended

WHERE THINGS GO WRONG
 syntactic errors

• common and easily caught

 static semantic errors
• some languages check for these before running program
• can cause unpredictable behavior

 no semantic errors but different meaning than what programmer intended
• program crashes, stops running
• program runs forever
• program gives an answer but different than expected

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

• definitions evaluated
• commands executed by Python interpreter in a shell

 commands(statements) instruct interpreter to do something

 can be typed directly in a shell or stored in a file that is read into the shell and evaluated

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things programs can do to them
 A human can walk, and speak English
 A monkey can walk, but cannot speak English

 objects are
 scalar (cannot be subdivided)
 non-scalar (have internal structure that can be accessed)

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

PRINTING TO CONSOLE
 to show output from code to a user, use print command

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression

<object> <operator> <object>

OPERATORS ON ints and floats
 i+j → the sum

 i-j → the difference

 i*j → the product

 i/j → division

 i//j → floor division

 i%j → the remainder when i is divided by j

 i**j → i to the power of j

if both are ints, result is int
if either or both are floats, result is float

result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these operations first

 operator precedence without parentheses
 **
 *
 /
 + and – executed left to right, as appear in expression

BINDING VARIABLES AND VALUES
 equal sign is an assignment of a value to a variable name

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by invoking the name, by typing pi

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

CHANGING BINDINGS
 can re-bind variable names using new assignment statements

 previous value may still stored in memory but lost the handle for it

 value for area does not change until you tell the computer to do the calculation again

A SIMPLE COUNTING PROBLEM
 You know 4 different roads which you can take to go from NEU to Copley square

 You know 3 different roads which you can take to go from Copley to Downtown.

 In how many different ways can you go from NEU to Downtown given that you want to stop at
Copley in between?

 You know also 5 different roads which you can take to go from NEU to Downtown directly
without passing Copley.

 In how many different ways can you go from NEU to Downtown now?

DM: RULES OF SUM and PRODUCT
Rule of sum:

 if we have A ways of doing something and B ways of doing another thing and we can not do
both at the same time, then there are A + B ways to choose one of the actions.

Rule of product:

 if there are a ways of doing something and b ways of doing another thing, then there
are a * b ways of performing both actions.

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes

hi = "hello there"

 concatenate strings

name = "Arya"

greet = hi + name

greeting = hi + " " + name

 do some operations on a string as defined in Python docs

silly = hi + " " + name * 3

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

INPUT/OUTPUT: input("")
 prints whatever is in the quotes

 user types in something and hits enter

 binds that value to a variable

text = input("Type anything... ")

print(5*text)

 input gives you a string so must cast if working with numbers

num= int(input("Type a number... "))

print(5*num)

STRINGS
 You can access the i’th character in a string using brackets.

s = “abcde”

s[0] → ‘a’
s[1] → ‘b’
…
s[4] → ‘e’

 use len function to get the length of a string, which is the number of characters it has:

len(s)→ 5

 Negative indexing, makes it easy to access the last elements!

s[-1]→ ‘e’

STRINGS
 you can get a slice of a string, by telling that from which index it starts and before which one it
ends.

s = “abcdef”

s[1:4]→ ‘bcd’

s[:3]→ ‘abc’ if we do not write the starting index, it assumes 0

s[3:]→ ‘def’ if we do not write the ending index, it assumes it is len(s)

COMPARISON OPERATORS ON int, float, string
 i and j are variable names

 comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j → equality test, True if i is the same as j

i != j → inequality test, True if i not the same as j

LOGIC OPERATORS ON bools
 a and b are variable names (with Boolean values)

not a → True if a is False. False if a is True

a and b → True if both are True

a or b → True if either or both are True

COMPARISON EXAMPLE
pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

CONTROL FLOW - BRANCHING

 <condition> has a value True or False
 evaluate expressions in that block if <condition> is True

INDENTATION
 matters in Python

 how you denote blocks of code

x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:
print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")

print("thanks!")

	DS5010�Intro to programming for Data Science
	TODAY
	Syllabus
	House and Alias name Assignments
	Python vs English as a language
	Python vs English as a language
	Python vs English as a language
	Python vs English as a language
	�WHERE THINGS GO WRONG
	�PYTHON PROGRAMS
	�OBJECTS
	�SCALAR OBJECTS
	�TYPE CONVERSIONS (CAST)
	PRINTING TO CONSOLE
	�EXPRESSIONS
	�OPERATORS ON ints and floats
	�SIMPLE OPERATIONS
	�BINDING VARIABLES AND VALUES
	�ABSTRACTING EXPRESSIONS
	PROGRAMMING vs MATH
	CHANGING BINDINGS
	A SIMPLE COUNTING PROBLEM
	DM: RULES OF SUM and PRODUCT
	STRINGS
	�INPUT/OUTPUT: print
	�INPUT/OUTPUT: input("")
	STRINGS
	STRINGS
	�COMPARISON OPERATORS ON int, float, string
	�LOGIC OPERATORS ON bools
	COMPARISON EXAMPLE
	�CONTROL FLOW - BRANCHING
	�INDENTATION

