
DS5010
Intro to programming for Data Science
LECTURE 5

TODAY
▪ review session 4

▪ what are objects

▪ classes

▪ object oriented programming

REVIEW
▪ induction

▪ recursion

▪ problem solving with recursion and divide and conquer technique

▪ higher order functions and lambda expressions

OBJECTS?
▪ we are surrounded by many objects

DIFFERENT OBJECTS?
▪ how do we differentiate between objects?

==
?

DIFFERENT OBJECTS?
▪ how about these?

?

==

DIFFERENT OBJECTS?
▪ or these?

?

==

DIFFERENT OBJECTS?
▪ and these?

?

==

DIFFERENT OBJECTS?
▪ objects can have different types

!=

cat type dog type

TYPE
▪ we categorize similar objects under a same
hood which is called type

▪ but how can we measure this similarity?

▪ if your measure is tight, each object can be a
separate type for its own!

▪ if your measure is loose, all objects can be
considered to be of a same type!

▪ so types are defined by convention!

DIFFERENT OBJECTS?
▪ objects of same type can have different attributes!

!=

color: gray color: cream

DATA ATTRIBUTES
▪ each type of objects has a set of data attributes (ex: color, age, name, …)

▪ by looking at attributes, you can distinguish between different types

▪ the data attributes themselves can be of any type

▪ data attributes define the state of an object

DIFFERENT OBJECTS?
▪ or these?

==

age: 2 months age: 2 years

can be a same cat
which became older
after a while

BEHAVIORAL ATTRIBUTES
▪ each type of objects may have some behavioral attributes (ex: walk, bark, jump, grow, …)

▪ these attributes, also can be used to distinguish between different types of objects

▪ the state of an object may change/evolve in the course of time, but that object remains a same
existence! This change is usually done by means of behavioral attributes.

DIFFERENT OBJECTS?
▪ even same looking objects may be different entities!

?

may be equal
may be not

EXAMPLE: TRAFFIC LIGHT
▪ type: Traffic Light

▪ data attributes:
▪ list_of_lights

▪ wait_times

▪ current_light

▪ is_in_use

▪ location

▪ behavioral attributes:
▪ change_light

▪ increase_wait_time

▪ turn_off

▪ each instance of a Traffic light type, has its own values for the above attributes.

OBJECTS IN PYTHON
▪ Python supports many different kinds of data

1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

▪ each is an object, and every object has:
▪ a type

▪ an internal data representation(primitive or composite)

▪ a set of procedures for interaction with the object

▪ an object is an instance of a type
▪ 1234 is an instance of an int

▪ "hello" is an instance of a string

OBJECTS IN PYTHON
▪ objects are a data abstraction of an entity that captures…

(1) an internal representation of the entity’s state
▪ through data attributes

(2) an interface for interacting with object, and exposing/manipulating its state
▪ through methods (aka procedures/functions/ behavioral attributes)

▪ defines behaviors but hides implementation

EXAMPLE:
[1,2,3,4] has type list
▪ how are lists represented internally? linked list of cells

▪ how to access the internals or manipulate lists?
▪ L[i], L[i:j], +

▪ len(), min(), max(), del(L[i])

▪ L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

▪ internal representation should be private

▪ correct behavior may be compromised if you manipulate internal representation directly

DEFINE YOUR OWN TYPES
▪ use the class keyword to define a new type

▪ similar to def, indent code to indicate which statements are part of the class definition

▪ example: We want to define a class of objects which are of type Coordinate

class <type_name>:

define attributes here

class Coordinate:
define attributes here

WHAT ARE ATTRIBUTES?
▪ data and procedures that “belong” to the class

▪ data attributes
▪ think of data as other objects that make up the class

▪ for example, a coordinate is made up of two numbers

▪ methods(procedural/behavioral attributes)
▪ think of methods as functions that only work with this class

▪ how to interact with the object

▪ for example you can define a distance between two coordinate objects but there is no meaning to a
distance between two list objects

DEFINING HOW TO CREATE AN INSTANCE OF
A CLASS
▪ first have to define how to create an instance of object

▪ use a special method called __init__ to initialize some data attributes

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

ACTUALLY CREATING AN INSTANCE OF A
CLASS

▪ data attributes of an instance are called instance variables

▪ don’t provide argument for self, Python does this automatically

c = Coordinate(3,4)
origin =
Coordinate(0,0)
print(c.x)
print(origin.x)

WHAT IS A METHOD?
▪ procedural attribute, like a function that works only with this class

▪ Python always passes the object as the first argument
▪ convention is to use self as the name of the first argument of all methods

▪ the “.”operator is used to access any attribute
▪ a data attribute of an object

▪ a method of an object

DEFINE A METHOD FOR THE Coordinate
CLASS

▪ other than self and dot notation, methods behave just like functions (take params, do
operations, return)

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

def distance(self, other):
x_diff_sq= (self.x - other.x)**2
y_diff_sq= (self.y - other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

HOW TO USE A METHOD
def distance(self, other):

code here

PRINT REPRESENTATION OF AN OBJECT

▪ uninformative print representation by default

▪ define a __str__ method for a class

▪ Python calls the __str__ method when used with print on your class object

▪ you choose what it does! Say that when we print a Coordinate object, want to show

>>> print(c)

<3,4>

>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinateobject at 0x7fa918510488>

DEFINING YOUR OWN PRINT
METHOD

class Coordinate:
def __init__(self, x, y):

self.x = x
self.y = y

def distance(self, other):
x_diff_sq= (self.x - other.x)**2
y_diff_sq= (self.y - other.y)**2
return (x_diff_sq + y_diff_sq)**0.5

def __str__(self):
return "<" + str(self.x) + "," + str(self.y) + ">"

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES

▪ can ask for the type of an object instance

>>> c = Coordinate(3,4)
>>> print(c)

<3,4>

>>> print(type(c))

<class __main__.Coordinate>

▪ this makes sense since

>>> print(Coordinate)

<class __main__.Coordinate>

>>> print(type(Coordinate))

<type 'type’>

▪ use isinstance() to check if an object is a Coordinate

>>> print(isinstance(c, Coordinate))
True

SPECIAL OPERATORS
▪ +, -, ==, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

▪ like print, can override these to work with your class

▪ define them with double underscores before/after

__add__(self, other) → self + other

__sub__(self, other) → self -other

__eq__(self, other) → self == other

__lt__(self, other) → self < other

__len__(self) → len(self)

__str__(self) → print(self)

... and others

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS
▪ create a new type to represent a number as a fraction

▪ internal representation is two integers
▪ numerator

▪ denominator

▪ interface a.k.a. methods a.k.a how to interact with Fraction objects
▪ add, subtract

▪ print representation, convert to a float

▪ invert the fraction

▪ let’s write the code for this. The file containing this code will be pushed to course repository for
your reference.

STATIC ATTRIBUTES
▪ shared between all the instances of a class, or in other words they are class level attributes rather than instance
attributes

▪ static data attributes are defined in class scope rather than the __init__ scope

▪ if an instance changes the static attribute, it will changed for all other instances!

▪ static attributes usually are accessed by using the dot notation on class names:
▪ c = Circle((0,0), 2)
▪ area = Circle.PI * c.radius**2

class Circle:
PI = 3.14

def __init__(self, c, r):
self.center = c
self.radius = r

STATIC ATTRIBUTES
▪ like static data attributes, we can have static methods

▪ static methods are also shared between all the instances, and their implementation is
independent of a specific instance!

▪ you declare a method as an static method by using a special decorator @staticmethod

class FlightSeat:
counter = 0

@staticmethod
def increase_counter():

FlightSeat.counter += 1

OBJECT ORIENTED PROGRAMMING (OOP)
▪ EVERYTHING IN PYTHON IS AN OBJECT(and has a type)

▪ can create new objects of some type

▪ can manipulate objects

▪ can destroy objects
▪ explicitly using del or just “forget” about them

▪ python system will reclaim destroyed or inaccessible objects –called “garbage collection”

THE POWER OF OOP
▪ bundle together objects that share
▪ common attributes and

▪ procedures that operate on those attributes

▪ use abstraction to make a distinction between how to implement an object vs how to use the
object

▪ build layers of object abstractions that inherit behaviors from other classes of objects (see this
next session)

▪ create our own classes of objects on top of Python’s basic classes

