DS5010

Intro to programming for Data Science

LECTURE 1

TODAY

= syllabus overview

= house and alias name assignments
= basic python objects

= basic operations

= variables and types

= rules of sum and product

= branching and conditionals

Syllabus

) you can access the full syllabus here:

https://rahiminasab.github.io/DS5010F19/

https://rahiminasab.github.io/DS5010F19/

House and Alias name Assignments

» students in this class will be divided into 5 Houses:
= Stark

= Baratheon

= Lannister
= Targaryen
= Martell

» each student will also get an alias name which are chosen from GOT character names.

» students will participate in HackerRank contests with a username derived from their alias
names.

» a script written in Python will do the assignments and emails the students their assigned,
House, alias name, and username.

Python vs English as a language

1 primitive constructs
o English: words.

o programming language: numbers, strings, simple operators.

. ';aoil::ld find be do answer Wy . s Ohe why does
S = and-
one she said wf:rd >
i Was him ab stll gey
on ESE"S he:: Ghabtrow arese
them iz | call hob all S“‘“‘""

whlch 9°

= o o fmmm .f =
help air h a d for mEnUe“-
boy

kush make
|5|me sound bu"-' long

ik bheg leﬂi people bhese country nged bhlng
il now could aboub ~ iponge o
story W side bwo me Who seb jf
her pmove ve ot

Word Cloud copyright Michael Twardos, All Right Reserved.

https://www.blogger.com/profile/13059549809775325178

Python vs English as a language

] syntax
* English: ’cat dog boy” — not syntactically valid
“cat hugs boy” — syntactically valid

* programming language: +"hi"9 — not syntactically valid

3.2*5 — syntactically valid

Python vs English as a language

1 static semantics is which syntactically valid strings have meaning

* English: I are hungry"™ — syntactically valid but with static semantic error

* programming language: 3.2*95 — syntactically valid

3+"hi" — static semantic error

Python vs English as a language

- semantics is the meaning associated with a syntactically correct string of symbols with no
static semantic errors

* English: can have many meanings "Flying planes can be dangerous”

* programming languages: have only one meaning but may not be what programmer intended

WHERE THINGS GO WRONG

1 syntactic errors
* common and easily caught

) static semantic errors
* some languages check for these before running program

* can cause unpredictable behavior

) no semantic errors but different meaning than what programmer intended
* program crashes, stops running
® program runs forever
* program gives an answer but different than expected

PYTHON PROGRAMS

) a program is a sequence of definitions and commands
¢ definitions evaluated

* commands executed by Python interpreter in a shell

) commands(statements) instruct interpreter to do something

) can be typed directly in a shell or stored in a file that is read into the shell and evaluated

OBJECTS

) programs manipulate data objects

) objects have a type that defines the kinds of things programs can do to them
J A human can walk, and speak English

J A monkey can walk, but cannot speak English

) objects are
) scalar (cannot be subdivided)

) non-scalar (have internal structure that can be accessed)

SCALAR OBJECTS

) int — represent integers, ex. 5

) float — represent real numbers, ex. 3.27
) bool —represent Boolean values True and False
) NoneType — special and has one value, None

) can use type() to see the type of an object

& Ot
>>>| type (5) /’@py{:%%?
P —————S————— Q ;
int e M She) %o
>>> type (3.0) By, EShe

&
float enf@’._ a}?@r

TYPE CONVERSIONS (CAST)

) can convert object of one type to another

) float(3) converts integer 3 to float 3.0

1 int(3.9) truncates float 3.9 to integer 3

PRINTING TO CONSOLE

) to show output from code to a user, use print command

QO
.{53
oV ' xne
1" ‘e\\ﬁ\‘ \N'\QO\“
aQV o®
In [11]z 342 O a®
W e
cEt[1l1l]: o n® oV et
8
o o ﬂ\‘oa
' $0¢|0 5\00\1’“ (\\‘0\)
In [12]: print(3+2) ¥ o™ o
D e aApS
2 \{=
5 30‘;\{\(\) W
e

EXPRESSIONS

) combine objects and operators to form expressions

) an expression has a value, which has a type

) syntax for a simple expression

<object> <operator> <object>

OPERATORS ON ints and floats

" i+3 - thesum

= i-3j - thedifference —— " ifbothareints, result is int
/ if either or both are floats, result is float
= i*j - the product

/

= i/9 - division / —» result is float

i//3 -> floor division

i%j - the remainder when i is divided by

i**j - i tothe power of]

SIMPLE OPERATIONS

= parentheses used to tell Python to do these operations first

= operator precedence without parentheses

m kk

m ¥

=/

= + and — executed left to right, as appear in expression

BINDING VARIABLES AND VALUES

= equal sign is an assignment of a value to a variable name
q3\°e

e
%‘E@O\\

pi|=1{3.14159

Pl appEex = 2277

= value stored in computer memory
= an assignment binds name to value

= retrieve value associated with name or variable by invoking the name, by typing pi

ABSTRACTING EXPRESSIONS

= why give names to values of expressions?

= to reuse names instead of values

= easier to change code later

ol = 3.14159
radigs = 2.2

area = pl* (radius**2)

PROGRAMMING vs MATH

= in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2
area of circle
area = pl*(radius**2) A A
: : 2
radius |[= |radius+l QX0 . 35
\\)’3‘6 20>
X eV z
e .
e™ % e 50N 28>
AP XN x0?*
55\% -\0'(\ e o® -\00
2027 o5 o e
e
* \1‘3"{\ 'an\e{\ g .‘}'5

CHANGING BINDINGS

= can re-bind variable names using new assignment statements

= previous value may still stored in memory but lost the handle for it

= value for area does not change until you tell the computer to do the calculation again

pli = 3.14
Fadlls = 2.2 radius

afres = pa*(Fadius~*2)
radius = radius+l

A SIMPLE COUNTING PROBLEM

= You know 4 different roads which you can take to go from NEU to Copley square

= You know 3 different roads which you can take to go from Copley to Downtown.

“* In how many different ways can you go from NEU to Downtown given that you want to stop at
Copley in between?

= You know also 5 different roads which you can take to go from NEU to Downtown directly
without passing Copley.

** In how many different ways can you go from NEU to Downtown now?

DM: RULES OF SUM and PRODUCT

Rule of sum:

= if we have A ways of doing something and B ways of doing another thing and we can not do
both at the same time, then there are A + B ways to choose one of the actions.

Rule of product:

= if there are a ways of doing something and b ways of doing another thing, then there
are a * b ways of performing both actions.

STRINGS

letters, special characters, spaces, digits

enclose in quotation marks or single quotes

hi = "hello there"

concatenate strings

name = "Arya"
greet = hi + name
greeting = hi + " " + name

do some operations on a string as defined in Python docs

silly = hi + " " 4+ name * 3

INPUT/OQUTPUT: print

= used to output stuff to console

= keyword is print

x =1

print (x)

X str = str (x)

print ("my fav num 1is", x, ".", "x =", x)

print ("my fav num 1s " + x str + ". " + "x =" 4+ x str)

INPUT/OUTPUT: input("")

prints whatever is in the quotes

user types in something and hits enter

binds that value to a variable
text = i1nput ("Type anything... ")

print (5*text)

input gives you a string so must cast if working with numbers
num= 1nt (input ("Type a number... "))

print (5*num)

STRINGS

= You can access the i’th character in a string using brackets.

s = “abcde”
s[0] - ‘a’
s[l] - ‘b’

= use len function to get the length of a string, which is the number of characters it has:

len(s)—- b

= Negative indexing, makes it easy to access the last elements!

STRINGS

= you can get a slice of a string, by telling that from which index it starts and before which one it
ends.

s = “abcdef”
s[l:4]- ‘bcd’

S [. 3]—> ‘abc’ if we do not write the starting index, it assumes O

S [3 :]—> ‘def’ if we do not write the ending index, it assumes it is len(s)

COMPARISON OPERATORS ON int, float, string

= 1 and j are variable names

= comparisons below evaluate to a Boolean

i>]

i >= 3

i<

i<=3

i == 7J - equality test, True 1f 1 1s the same as]

i !'= j - inequality test, True if 1 not the same as]

LOGIC OPERATORS ON bools

" a and b are variable names (with Boolean values)

nota - TrueifaisFalse.Falseif a is True
aandb — Trueif bothare True

aorb—- True if either or both are True

A B |AandB__lAorB____

True True True True
True False False True
False True False True
False False False False

COMPARISON EXAMPLE

pset time = 15

sleep time = 8

print (sleep time > pset time)

derive = True

drink = False

both = drink and derive
print (both)

CONTROL FLOW - BRANCHING

1T <esnditionss 1.¥ Lgonditions:
<expression> <expression>
<expression> <expression>

elif <conditionh>:

1f <condition>: <expression>
<expression> <expression>
<expression> —
“ else:
else: <expression>
<expression> <expression>
<exXpression> —

" <condition> hasavalue TrueorFalse
= evaluate expressions in that block if <condition> is True

INDENTATION

= matters in Python

= how you denote blocks of code

x = float(input ("Enter a number for x: "))
y = float (input ("Enter a number for y: "))
1f x == y:

print ("x and y are equal")

if y !'= 0:

print ("therefore, x / y is", x/vy)
elif x < y:
print ("x is smaller")
else:
print ("y is smaller")

print ("thanks!")

	DS5010�Intro to programming for Data Science
	TODAY
	Syllabus
	House and Alias name Assignments
	Python vs English as a language
	Python vs English as a language
	Python vs English as a language
	Python vs English as a language
	�WHERE THINGS GO WRONG
	�PYTHON PROGRAMS
	�OBJECTS
	�SCALAR OBJECTS
	�TYPE CONVERSIONS (CAST)
	PRINTING TO CONSOLE
	�EXPRESSIONS
	�OPERATORS ON ints and floats
	�SIMPLE OPERATIONS
	�BINDING VARIABLES AND VALUES
	�ABSTRACTING EXPRESSIONS
	PROGRAMMING vs MATH
	CHANGING BINDINGS
	A SIMPLE COUNTING PROBLEM
	DM: RULES OF SUM and PRODUCT
	STRINGS
	�INPUT/OUTPUT: print
	�INPUT/OUTPUT: input("")
	STRINGS
	STRINGS
	�COMPARISON OPERATORS ON int, float, string
	�LOGIC OPERATORS ON bools
	COMPARISON EXAMPLE
	�CONTROL FLOW - BRANCHING
	�INDENTATION

