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TODAY
▪ review session 3

▪ talk about induction

▪ introduce recursion

▪ solving problems with recursion and divide and conquer technique

▪ higher order functions and lambda expressions



REVIEW
▪ permutations, combinations

▪ functions

▪ scopes

▪ modules



MATHEMATICAL 
INDUCTION
Mathematical induction proves that we can climb as high as 
we like on a ladder, by proving that we can climb onto the 
bottom rung (the basis) and that from each rung we can 
climb up to the next one (the step).

— Concrete Mathematics, page 3 margins.

https://en.wikipedia.org/wiki/Concrete_Mathematics


MATHEMATICAL 
INDUCTION
Problem:

Some one says for all positive integer 𝒏 we have:

1 + 2 + 3 + …+ 𝑛 =
𝑛(𝑛 + 1)

2

how can you prove this equality holds for all positive 
integers?



MATHEMATICAL INDUCTION

basis:

show 𝑃(𝒏𝟎) is True

hypothesis:

assume 𝑃(𝑛) is True 
for all 𝑛 ≤ 𝒌

step:

prove based on 
hypothesis 𝑃 𝒌 + 𝟏 is 

also True 

to show a mathematical proposition like 𝑷(𝒏) holds for all 𝒏 ≥ 𝒏𝟎 using induction:



MATHEMATICAL 
INDUCTION

Problem:

Some one says for all positive integer 𝒏 ≥ 𝟓 we have:

2𝑛 > 𝑛2

use induction to prove this inequality holds for integers 𝑛 ≥
5!



MATHEMATICAL 
INDUCTION

Problem:

Some one says for all positive integer 𝒏 we have:

A convex 𝒏−gon has
𝒏(𝒏 − 𝟑)

𝟐
diagonals

use induction to prove this equality holds for all positive 
integers!



RECURSION
▪ Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its type. 

▪ it is closely tied to induction!



RECURSIVE 
DEFINTION
▪ a definition which is defined in terms of itself!!!

▪ examples:
▪ what is GNU? GNU is Not Unix!

▪

def f(x):
y = x + f(x)
return y



WHY DO WE NEED THESE CLUNKY 
DEFINITIONS?
▪ recursive definitions are everywhere!

▪ recursion usually gives us a very simpler way of defining things.

the set of natural numbers ℕ:

1) 1 ∈ ℕ

2) 𝑛 ∈ ℕ if 𝑛 − 1 ∈ ℕ

the set of prime numbers:

1 is not a prime number

𝑛 is a prime number if and only
if it is not divisible by any smaller
prime numbers.

a to the power of b (𝑎𝑏):

if 𝑏 = 0, then it is 1. otherwise it
is the multiplication of
𝑎 to the power of 𝑏 − 1 multiplied
by 𝑎. (𝑎𝑏−1 × 𝑎)



RECURSIVE PROBLEM SOLVING
▪ a problem like P can be solved recursively if:
▪ its solution can be defined recursively in terms of P itself! (what does this mean?!!)

▪ there are some simple inputs for which the solution is straight forward. (base cases)

▪ this is problem P:

BIG
INPUT



RECURSIVE PROBLEM SOLVING
▪ a problem like P can be solved recursively if:
▪ its solution can be defined recursively in terms of P itself! (what does this mean?!!)

▪ there are some simple inputs for which the solution is straight forward. (base cases)

▪ we assume we know all the solutions to smaller inputs:

SMALLER
INPUT



RECURSIVE PROBLEM SOLVING
▪ a problem like P can be solved recursively if:
▪ its solution can be defined recursively in terms of P itself! (what does this mean?!!)

▪ there are some simple inputs for which the solution is straight forward. (base cases)

▪ we make sure P has a trivial solution for some very small inputs!

i



RECURSIVE PROBLEM SOLVING
▪ a problem like P can be solved recursively if:
▪ its solution can be defined recursively in terms of P itself! (what does this mean?!!)

▪ there are some simple inputs for which the solution is straight forward. (base cases)

▪ can we compose the solution to the big input, by using the solutions to smaller inputs?

BIG
INPUT

…

SMALLER
INPUT

SMALLER
INPUT

SMALLER
INPUT

……



RECURSION        vs          INDUCTION
▪ what we just saw was very similar to induction.

➢ find out the solutions to P
when input is trivial (base cases).

➢ assume you have the solutions
to P for all smaller inputs.

➢ show P can be solved by composing
the solutions to smaller inputs.

➢ write the induction basis for the proposition
when 𝑛 = 𝑛0 .

➢ Induction Hypothesis. Assume the proposition
holds for 𝑛 ≤ 𝑘.

➢ Induction Step. Show the proposition holds
for 𝑛 = 𝑘 + 1 by using the induction hypothesis.



RECURSIVE PROBLEM SOLVING
▪ Algorithmically: a way to design solutions to problems by divide-and-conquer or decrease-and-
conquer
▪ reduce a problem to simpler versions of the same problem 

▪Semantically: a programming technique where a function calls itself
▪ in programming, goal is to NOT have infinite recursion

▪ must have 1 or more base cases that are easy to solve

▪ must solve the same problem on some other input with the goal of 
simplifying the larger problem input



ITERATIVE ALGORITHMS SO FAR
▪ looping constructs (while and for loops) lead

to iterative algorithms

▪ can capture computation in a set of state variables that 
update on each iteration through loop 



MULTIPLICATION – ITERATIVE SOLUTION
▪ “multiply 𝑎 × 𝑏” is equivalent to “add 𝑎 to itself 𝑏 times” 

▪ capture state by
▪ an iteration number (i) starts at b

i ← i-1 and stop when 0 

▪ a current value of computation (result)
result ← result + a



MULTIPLICATION – RECURSIVE SOLUTION

▪ recursive step 
▪ think how to reduce problem 

to a simpler/smaller version 
of same problem

▪ base case
▪ keep reducing problem until 

reach a simple case that can 
be solved directly

▪ when b = 1, a*b = a



FACTORIAL
𝑛! = 𝑛 × 𝑛 − 1 ×⋯× 2 × 1

▪ for what 𝑛 do we know the factorial trivially?

n = 1      →   if n == 1: 

return 1

▪ how to reduce problem? Rewrite in terms of something simpler to reach base case

n*(n-1)!    →   else: 

return n*factorial(n-1)



RECURSIVE FUNCTION
SCOPE EXAMPLE



SOME OBSERVATIONS
▪ each recursive call to a function creates its 
own scope/environment

▪ bindings of variables in a scope are not
changed by recursive call

▪ flow of control passes back to previous scope 
once function call returns value



ITERATION       vs.      RECURSION

▪ recursion may be simpler, more intuitive

▪ recursion may be efficient from programmer POV

▪ recursion may not be efficient from computer POV 

def factorial_iter(n):
prod = 1
for i in range(1, n + 1):

prod *= i
return prod

def factorial_recur(n):
if n == 1:

return 1
return n* factorial_recur(n-1)



TOWERS OF HANOI

 

 

 

 

 

 

 

  



TOWERS OF HANOI
The story:

▪ 3 tall spikes

▪ Stack of 64 different sized discs – start on one spike

▪ Need to move stack to third spike (at which point universe ends!!)

▪ Can only move one disc at a time, and a larger disc can never cover up a small disc



TOWERS OF HANOI
for cool animated examples, refer to http://towersofhanoi.info/Animate.aspx

http://towersofhanoi.info/Animate.aspx


TOWERS OF HANOI
▪ Having seen a set of examples of different sized stacks, how would you write a program to print 

out the right set of moves for n disks?

▪ Think recursively!

▪ assume you know how to move n-1 disks correctly.

▪ you know the base case where you only have to move one disk

▪ now how do you compose a solution for n disks?



TOWERS OF HANOI



RECURSION WITH MULTIPLE BASE CASES
▪ Fibonacci numbers 

the Fibonacci Sequence is the series of numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...
each number in the sequence drives from the addition of its two predecessor elements.

𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹 𝑛 − 2

and we have two base cases:        𝐹 0 = 𝐹 1 = 1



FIBONACCI



RECURSION ON NON-
NUMERICS
problem:

you are given a string like s, write a recursive function which 
returns the reverse of s.

ex: s=“abcde” → “edcba”



REVERSE STRING

def rev_recur(s):
if len(s) <= 1:

return s

return s[-1] + rev_recur(s[1:-1]) + s[0]



DIVIDE AND CONQUER
▪ an example of a “divide and conquer” algorithm

▪ solve a hard problem by breaking it into a set of sub-problems such that:
▪ sub-problems are easier to solve than the original 

▪ solutions of the sub-problems can be combined to solve the original



MERGE SORT
Problem:

Given an array of integers, sort the elements in increasing order.

L = [7, 5, 2, 4, 1, 6, 3, 0]

L = [0, 1, 2, 3, 4, 5, 6, 7]



THINK RECURSIVELY
▪ the base case is straight-forward. If our list only has one

element, then that list is already sorted.

▪ assuming to have the solution for smaller sub-problems.
▪ if we divide the list in half, then we have two smaller sub-lists (say L1 and L2), 

for which we assume we know their sorted version.

▪ how can we use the sorted version of L1 and L2, to come up with the sorted version of L?



MERGE SORT



MERGE SORT



MERGE SORT

def merge_sort(L):
if len(L) <= 1:

return L

mid = len(L)//2

L1 = merge_sort(L[:mid])
L2 = merge_sort(L[mid:])

return merge(L1, L2) combining solutions
to subproblem to
come up with solution
to main problem



MERGE
def merge(L1, L2):

i = j = 0
m, n = len(L1), len(L2)
result = []

while i + j < m + n:
if i < m and j < n:

if L1[i] < L2[j]:
result.append(L1[i])
i += 1

else:
result.append(L2[j])
j += 1

elif i < m:
result.append(L1[i])
i += 1

else:
result.append(L2[j])
j += 1

return result



HIGHER ORDER FUNCTIONS
• a higher-order function is a function that takes another function as a parameter

• they are “higher-order” because it’s a function of a function

• Examples

–map

– filter

– reduce



MAP
map(function, iterable)

• map applies function to each element of iterable and creates a list of the results

• map returns an iterator which can be cast to list



MAP EXAMPLE

def func(i):
return i**2

L = [1, 2, 3]

L_mapped = map(func, L)

print(list(L_mapped))

prints   [1, 4, 9]



FILTER
filter(function, iterable)



FILTER
• the filter runs through each element of iterable (any iterable object such as a List 
or another collection)

• it applies a function to each element of iterable

• if that function returns True for that element then the element is put into a List 

• this list is returned from filter in versions of python under 3

• in python 3, filter returns an iterator which must be cast to type list with list()



FILTER EXAMPLE

def func(i):
return i % 2 == 0

L = [1, 2, 3, 4, 5, 6, 7]

L_filtered = filter(func, L)

print(list(L_filtered))

prints   [2, 4, 6]



LAMBDA EXPRESSIONS

▪ anonymous functions (functions without names)

▪ can have any number of parameters, each separated by a comma

▪ returns the value which is derived from <some_expression>

lambda <params>: <some_expression>



LAMBDA EXAMPLE

f = lambda x: x**2

r = f(4)

print(r)

prints   16



MAP EXAMPLE with LAMBDA

L = [1, 2, 3]

L_mapped = map(lambda x: x**2, L)

print(list(L_mapped))

prints   [1, 4, 9]

used when mapping function
is so simple that the return
value is just an expression
made from given parameters



FILTER EXAMPLE with LAMBDA

L = [1, 2, 3, 4, 5, 6, 7]

L_filtered = filter(lambda i: i%2 == 0, L)

print(list(L_filtered))

prints   [2, 4, 6]

used when filtering function
is so simple that the return
value is just an expression
made from given parameters



LAMBDA with MORE THAN ONE PARAMS
f = lambda x, y: x + y

print(f(4,5))  # pinrts 9



MAP with MORE THAN ONE ITERABLE
▪ map can get one or more iterables as argument

▪ the mapping function will map the i’th elements of the iterables to one element.

▪ example:

map(lambda x, y: x+y, [1,2,3], [10,20,30])

maps the two iterables to

[11,22,33]



EXAMPLE: EUCLIDEAN DISTANCE in ONE 
LINE
dist = lambda p, q: math.sqrt(sum(map(lambda x, y: (x-y)**2, p, q)))

p1 = (1, 2, 3)
p2 = (4, 5, 6)

print(dist(p1, p2))

prints 5.196152422706632


