DS5010

Intro to programming for Data Science

LECTURE 4

TODAY

" review session 3

= talk about induction
= introduce recursion

= solving problems with recursion and divide and conquer technique

= higher order functions and lambda expressions

REVIEW

= permutations, combinations

= functions

" scopes

= modules

MATHEMATICAL
NDUCTION

Mathematical induction proves that we can climb as high as
we like on a ladder, by proving that we can climb onto the
bottom rung (the basis) and that from each rung we can
climb up to the next one (the step).

We can reach step k& + 1 1f

we can reach step &

— Concrete Mathematics, page 3 margins.

We can reach
step |

https://en.wikipedia.org/wiki/Concrete_Mathematics

MATHEMATICAL
NDUCTION

Problem:

Some one says for all positive integer n we have:

nn+ 1)

1+2+3+ ...+n= 5

how can you prove this equality holds for all positive
integers?

MATHEMATICAL INDUCTION

to show a mathematical proposition like P(n) holds for all n = ng using induction:

: prove based on
for aﬁ (7/711)<|S Ui hypothesis P() is

also True

show P() is True

MATHEMATICAL
NDUCTION

Problem:

Some one says for all positive integer n = 5 we have:

2™ > n?

use induction to prove this inequality holds for integers n >
5!

MATHEMATICAL
NDUCTION

Problem:

Some one says for all positive integer n we have:

nn—-—3)
A convex n—gon has > diagonals

use induction to prove this equality holds for all positive
integers!

RECURSION

= Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its type.

= it is closely tied to induction!

RECURSIVE
DEFINTION

= a definition which is defined in terms of itself!!!

= examples:
= what is GNU? GNU is Not Unix!

def f(x): &
X
y = X + [f(x) ‘,;\o"oO@‘
O
return y @" &
RN
s\\“

6@

WHY DO WE NEED THESE CLUNKY
DEFINITIONS?

= recursive definitions are everywhere!

the set of prime numbers:

the set of natural numbers N: a to the power of b (a?):

1 is not a prime number

1)1 €N if b =0, thenitis 1. otherwise it

is the multiplication of
a to the power of b — 1 multiplied
by a. (a?~1 x a)

n is a prime number if and only
if it is not divisible by any smaller
prime numbers.

2)neN if n—1€eN

= recursion usually gives us a very simpler way of defining things.

RECURSIVE PROBLEM SOLVING

= a problem like P can be solved recursively if:
= jts solution can be defined recursively in terms of P itself! (what does this mean?!!)

= there are some simple inputs for which the solution is straight forward. (base cases)

= this is problem P:

RECURSIVE PROBLEM SOLVING

= a problem like P can be solved recursively if:
= jts solution can be defined recursively in terms of P itself! (what does this mean?!!)

= there are some simple inputs for which the solution is straight forward. (base cases)

= we assume we know all the solutions to smaller inputs:

?@

RECURSIVE PROBLEM SOLVING

= a problem like P can be solved recursively if:
= jts solution can be defined recursively in terms of P itself! (what does this mean?!!)

= there are some simple inputs for which the solution is straight forward. (base cases)

= we make sure P has a trivial solution for some very small inputs!

?Z 0 | > ‘ N

RECURSIVE PROBLEM SOLVING

= a problem like P can be solved recursively if:
= jts solution can be defined recursively in terms of P itself! (what does this mean?!!)

= there are some simple inputs for which the solution is straight forward. (base cases)

= can we compose the solution to the big input, by using the solutions to smaller inputs?

RECURSION VS

INDUCTION

= what we just saw was very similar to induction.

» find out the solutions to P
when input is trivial (base cases).

» assume you have the solutions
to P for all smaller inputs.

» show P can be solved by composing
the solutions to smaller inputs.

» write the induction basis for the proposition
whenn =ng .

» Induction Hypothesis. Assume the proposition
holds forn < k.

» Induction Step. Show the proposition holds
forn = k + 1 by using the induction hypothesis.

RECURSIVE PROBLEM SOLVING

= Algorithmically: a way to design solutions to problems by divide-and-conquer or decrease-and-
conquer

* reduce a problem to simpler versions of the same problem

=Semantically: a programming technique where a function calls itself
" in programming, goal is to NOT have infinite recursion

= must have 1 or more base cases that are easy to solve

= must solve the same problem on some other input with the goal of
simplifying the larger problem input

ITERATIVE ALGORITHMS SO FAR

" looping constructs (while and for loops) lead
to iterative algorithms

= can capture computation in a set of state variables that
update on each iteration through loop

MULTIPLICATION — ITERATIVE SOLUTION

= “multiply a X b” is equivalent to “add a to itself b times”

lcapture state by a+a+a+a+ . + a

= an iteration number (1) starts at b n J J J

i « i-1 andstop whenO Oa 1la 2a

= a current value of computation (result)
result —«result + a

. Ath
. O
def mult iter(a, b): Qu?

— AN e
result = 0 @,(\00 e © e 2©
: Xe (o) AO
while b > 0: L o e

result += a o e \o?«o&\
= X
b 1 ¥ <?f°‘®
__ ¢
o

return result

MULTIPLICATION — RECURSIVE SOLUTION

a*b =a+a+a+a+ . + a
1 7
. N _((\e‘.":
= recursive step o®
= think how to reduce problem s B b B e B e s o @Wé
to a simpler/smaller version * Y z i
of same problem 2 .
e
=a +la * (b-1) (‘gpﬁ>
= base case i
= keep reducing problem until 98 WUlt(a, D)z ™
reach a simple case that can if b == 13 S W
be solved directly <e0°(5
= whenb=1,a*b=a el R xe®

else:

return a + mult (a, b-1)

FACTORIAL

n=nxmn-1)x--x2x1

= for what n do we know the factorial trivially?
n =1 — if n == 1: (ﬁ&
(%
return 1. @°

= how to reduce problem? Rewrite in terms of something simpler to reach base case

n*(n-1)! — else:
return n*factorial (n-1) &ﬁ

RECURSIVE FUNCTION A

return 1

SCOPE EXAMPLE -

return n*fact (n-1)

print (fact (4))

Global scope fact scope fact scope fact scope fact scope
(call w/ n=4) (call w/ n=3) (call w/ n=2) (call w/ n=1)

fact Some

SOME OBSERVATIONS

—_—

= each recursive call to a function creates its
own scope/environment

S—

= bindings of variables in a scope are not
changed by recursive call

—

= flow of control passes back to previous scope
once function call returns value

US/
Nam "8 the Sam
€s b Var/
0 Ut ¢ able
b/eCt S in s /7 are e gif
“Paratq sco ferent
Opeg

ITERATION vs. RECURSION

def factorial iter(n): def factorial_recur(n):
prod = 1 if n ==
for i in range(1, n + 1): return 1
prod *= i return n* factorial recur(n-1)

return prod

= recursion may be simpler, more intuitive
= recursion may be efficient from programmer POV

= recursion may not be efficient from computer POV

TOWERS OF HANOI

TOWERS OF HANOI

The story:

= 3 tall spikes
= Stack of 64 different sized discs — start on one spike

= Need to move stack to third spike (at which point universe ends!!)

= Can only move one disc at a time, and a larger disc can never cover up a small disc

TOWERS OF HANOI

for cool animated examples, refer to http://towersofhanoi.info/Animate.aspx

©

http://towersofhanoi.info/Animate.aspx

TOWERS OF HANOI

= Having seen a set of examples of different sized stacks, how would you write a program to print

out the right set of moves for N disks?

= Think recursively!

= assume you know how to move N-1 disks correctly.

= you know the base case where you only have to move one disk

= now how do you compose a solution for N disks?

TOWERS OF HANOI

def printMove (fr, to):

print ('move from ' + str(fr) + ' to ' + str(to))

def Towers(n, fr, to, spare):
1f 1 == i
printMove (fr, to)
else:
Towers (n-1, fr, spare, to)
Towers(l, fr, to, spare)

Towers (n-1, spare, to, fr)

RECURSION WITH MULTIPLE BASE CASES

= Fibonacci numbers

the Fibonacci Sequence is the series of numbers:

1,1,2,3,5,8,13, 21, 34, ...

each number in the sequence drives from the addition of its two predecessor elements.

Fn)=Fn—-1)+F(n—2)
and we have two base cases: F(O)=F(1) =1

FIBONACCI

def fib (x):

"hilggsumes X an int >= 0
returns Fibonacci of x""”
if % == 0 QF X == 1:
return 1

else:

return fib(x-1) + fib(x-2)

RECURSION ON NON-
NUMERICS

problem:

you are given a string like s, write a recursive function which
returns the reverse of s.

ex: s=“Vabcde” — “edcba”

REVERSE STRING

def rev_recur(s):
if len(s) <= 1:
return s

return s[-1] + rev_recur(s[1l:-1]) + s[0]

DIVIDE AND CONQUER

= an example of a “divide and conquer” algorithm

= solve a hard problem by breaking it into a set of sub-problems such that:
= sub-problems are easier to solve than the original

= solutions of the sub-problems can be combined to solve the original

MERGE SORT

Problem:

Given an array of integers, sort the elements in increasing order.

b 1=0,1,2,3,4,5,6,7]

L= [71 5’ 2) 4) 1I 61 3’ O]

THINK RECURSIVELY

= the base case is straight-forward. If our list only has one
element, then that list is already sorted.

= assuming to have the solution for smaller sub-problems.

= if we divide the list in half, then we have two smaller sub-lists (say L1 and L2),
for which we assume we know their sorted version.

= how can we use the sorted version of L1 and L2, to come up with the sorted version of L?

MERGE SORT

75241630

N g

Fubm Lo

split

Figure: Merge sort divide phase

1

1630

6 30

MERGE SORT

01234567

/T\

2457 : 0136

< :/
N N NI

7 '5 4 : 1 6| |3 0

merge

Fig: Merge sort: combine phase

MERGE SORT

def merge sort(L):

. . A
if len(L) <= 1: g&ca
return L ©
<
. \&
mid = len(L)//2 °
%Spﬂ
NI
L1 = merge_sort(L[:mid]) eﬁwsgﬁe
L2 = merge_sort(L[mid:]) @

return merge(L1l, L2) |[combining solutions
to subproblem to
come up with solution
to main problem

MERGE

def merge(L1l, L2):

1=73]=20
m, n = len(L1l), len(L2)
result = []

while i + j < m + n:
if i <mand j < n:
if L1[i] < L2[]]:
result.append(L1[i])
i+=1
else:
result.append(L2[j])
j+=1
elif i < m:
result.append(L1[i])
i+=1
else:
result.append(L2[j])
j+=1

return result

HIGHER ORDER FUNCTIONS

* a higher-order function is a function that takes another function as a parameter
e they are “higher-order” because it's a function of a function
e Examples

—map

—filter

—reduce

MAP

map (function, 1terable)

» map applies function to each element of iterable and creates a list of the results
e map returns an iterator which can be cast to list

> map [—>
list [X,y,Z] [f(x), f(y), f(z)]
modified list

MAP EXAMPLE

def func(i):
return i**2

L = [1J 2, 3]

L _mapped =|map(func, L) |

print(list(L _mapped))

E{} prints [1, 4, 9]

FILTER

\ { filter (function, i1terable)

FILTER

e the filter runs through each element of iterable (any iterable object such asa List
or another collection)

* it applies a function to each element of iterable
o if that function returns True for that element then the element is put into a List

e this list is returned from filter in versions of python under 3
e in python 3, filter returns an iterator which must be cast to type list with list()

FILTER EXAMPLE

def func(i):

return i % 2 == oV ¢
? o . NQO {\‘\\) e(\\
S e%(\\e(\"e e\e‘(;&\\c;&
\ A\ X!
L = [1’ 2, 3, 4, 5, 6, 7] zQQ\\Z’a(X\Q:&@e"i&oO\)
0(\ \)((\5 666
& o?

L_filtered = |[filter(func, L)| &°

print(list(L_filtered))

E{} prints [2, 4, 6]

LAMBDA EXPRESSIONS

lambda <params>: <some_expression>

= anonymous functions (functions without names)

= can have any number of parameters, each separated by a comma

= returns the value which is derived from <some_expression>

LAMBDA EXAMPLE

_5
I
_h
Vo
N
N’

%
7/
7

%

E prints 16

MAP EXAMPLE with LAMBDA

QO

bess. 00’8‘ used when mapping function
e?’(\b&&\é\ is so simple that the return
66‘{\0 o o value is just an expression
L = [1, 2, 3] ((\QQQS,()((\Q’ made from given parameters
X

L _mapped = map(lambda x: x**2|, L)

print(list(L_mapped))

g prints [1, 4, 9]

FILTER EXAMPLE with LAMBDA

N2 used when filtering function

6"66(-90“6‘ is so simple that the return
‘ e’b“ \)(\c‘\ value is just an expression
6@“\0 \(\%;\ ’(\@e made from given parameters
L =1[1, 2, 3, 4, 5, 6, 7] g\\@;@«e
X

L filtered = filter(lambda i: i%2 == 0, L)

print(list(L_filtered))

g prints [2, 4, 6]

LAMBDA with MORE THAN ONE PARAMS

f = lambda x, y: X + vy

print(f(4,5)) # pinrts ©

MAP with MORE THAN ONE ITERABLE

= map can get one or more iterables as argument

= the mapping function will map the i’th elements of the iterables to one element.

= example:

map(lambda x, y: x+y,|[1,2,3], [[10,20,30])

e \&
(’30\ , @°
-\&8 6\\?«
\‘c’& o®
°
maps the two iterables to
[11,22,33]

EXAMPLE: EUCLIDEAN DISTANCE in ONE
LINE

dist = lambda p, qg: math.sgrt(sum(map(lambda x, y: (x-y)**2, p, q)))

(1, 2, 3)
(4, 5, 6)

pl
p2

print(dist(pl, p2))

\. > prints 5.196152422706632

