DS5010

Intro to programming for Data Science

LECTURE 5

TODAY

" review session 4

= what are objects

= classes

= object oriented programming

REVIEW

= induction

" recursion

= problem solving with recursion and divide and conquer technique

= higher order functions and lambda expressions

OBJECTS?

= we are surrounded by many objects

DIFFERENT OBJECTS?

= how do we differentiate between objects?

DIFFERENT OBJECTS?

= how about these?

DIFFERENT OBJECTS?

= or these?

)

DIFFERENT OBJECTS?

= and these?

DIFFERENT OBJECTS?

= objects can have different types

TYPE

= we categorize similar objects under a same
hood which is called type

= but how can we measure this similarity?

= if your measure is tight, each object can be a
separate type for its own!

= if your measure is loose, all objects can be
considered to be of a same type!

" 5o types are defined by convention!

DIFFERENT OBJECTS?

= objects of same type can have different attributes!

color: gray color: cream

DATA ATTRIBUTES

= each type of objects has a set of data attributes (ex: color, age, name, ...)

= by looking at attributes, you can distinguish between different types

= the data attributes themselves can be of any type

= data attributes define the State of an object

DIFFERENT OBJECTS?

= or these?

- - : ‘
= +- can be a same cat
which became older

after a while
age: 2 months age: 2 years

BERAVIORAL ATTRIBUTES

= each type of objects may have some behavioral attributes (ex: walk, bark, jump, grow, ...)

= these attributes, also can be used to distinguish between different types of objects

= the state of an object may change/evolve in the course of time, but that object remains a same
existence! This change is usually done by means of behavioral attributes.

DIFFERENT OBJECTS?

= even same looking objects may be different entities!

may be equal
may be not

EXAMPLE: TRAFFIC LIGHT

= type: Traffic Light

= data attributes:
= list_of lights
= wait_times
= current_light
= is_in_use
= |ocation

= behavioral attributes:
= change_light
" increase_wait_time
= turn_off

= each instance of a Traffic light type, has its own values for the above attributes.

OBJECTS IN PYTHON

= Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]
{"CA": "California", "MA": "Massachusetts"}

= each is an object, and every object has:
" atype
= an internal data representation(primitive or composite)
= a set of procedures for interaction with the object

= an object is an instance of a type
= 1234 is an instance of an int

= "hello" is an instance of a string

OBJECTS IN PYTHON

= objects are a data abstraction of an entity that captures...

(1) an internal representation of the entity’s State
= through data attributes

(2) an interface for interacting with object, and exposing/manipulating its state
= through methods (aka procedures/functions/ behavioral attributes)

= defines behaviors but hides implementation

EXAMPLE:
[1,2,3,4] has type list

= how are lists represented internally? linked list of cells

1. = ENER—FEER - ERER - EEESR

/,,f@
Co,. 9/,
0/77'0 . /11//'
. . . s, //C‘ Lo
= how to access the internals or manipulate lists? My Ve 070"@
* L{i], L[i:9], + Uing Dar,
= len(), min(), max(), del (L[i]) @OZ,&”

= L.append(),L.extend(),L.count(),L.index (),
L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()
= internal representation should be private

= correct behavior may be compromised if you manipulate internal representation directly

DEFINE YOUR OWN TYPES

= use the class keyword to define a new type

class <type name>: fOrCrea. /Llepri ;
define attributes here Which Ing

= similar to de f, indent code to indicate which statements are part of the class definition

= example: We want to define a class of objects which are of type Coordinate

class Coordinate:
define attributes here

WHAT ARE ATTRIBUTES?

= data and procedures that “belong” to the class

= data attributes
= think of data as other objects that make up the class

= for example, a coordinate is made up of two numbers

= methods(procedural/behavioral attributes)
= think of methods as functions that only work with this class

= how to interact with the object

= for example you can define a distance between two coordinate objects but there is no meaning to a
distance between two list objects

DEFINING ROW TO CREATE AN INSTANCE OF
A CLASS

= first have to define how to create an instance of object

= use a special method called __init__ to initialize some data attributes

6‘0/ self.x = X \ (X0
a0 o selfly| = et
v\ O xan© Y=Y et Jan
0eC \ el 0 cxne
S G AN \e € e ©
(€ « (\0\)‘0 . . St
\
~ de(sc‘o(e a’&&(\\ou‘e e Ob\ec V25>
W\ ald R
’Q\NO d Coo’ﬁd

ACTUALLY CREATING AN INSTANCE OF A
CLASS

i o;reatea

c =|Coordinate(3,4) typecnew%.
origin = U’;ZSS in 3 aizrdifj;cz
Coordinate(0,0) St e ~1n;, Tto "Cang
pr‘int(c X) ed‘\\e(\a“"‘\o ~

° \)S 3

. _t 0 0 CQGSS a(\cec
print(origin.x St
(o)

= data attributes of an instance are called instance variables

= don’t provide argument for sel f, Python does this automatically

WHAT IS A METHOD?

= procedural attribute, like a function that works only with this class

= Python always passes the object as the first argument
= convention is to use self as the name of the first argument of all methods

= the “.”operator is used to access any attribute
= a data attribute of an object

= a method of an object

DEFINE A METHOD FOR THE Coordinate
CLASS

&
e o
. 2 C§§0
class Coordinate: *«@ O
def init (self, x, y):‘Q@O <&§9 dép
self.x = X IEC e’
\0 \\e(0’5
self.y =y B\ S N
\)Se \\ ’6\"\0
N

def distance(self|, |other): ac*
x_diff sg= (self|.x|- other.x)**2
y diff sgq= (self.y - other.y)**2
return (x_diff _sq + y diff _sq)**0.5

= other than self and dot notation, methods behave just like functions (take params, do
operations, return)

HOW TO USE A METHOD

def distance(self, other):
code here

Using the class:

= conventional way

c = Coordinate(3,4)
zero = Coordinate(0,0)

prasni (.Idistancel(zerol))

N\
o ok

53¢
\(\O
e\.
" equivalent to
c = Coordinate(3,4)
zero = Coordinate (0,0)
print1Coordinate.distance4c, zerol)
20

PRINT REPRESENTATION OF AN OBJECT

>>> ¢ = Coordinate(3,4)
>>> print(c)
<_main__ .Coordinateobject at 0x7fa918510488>

= uninformative print representation by default

= definea __str___method for a class

= Python calls the __str method when used with print on your class object

= you choose what it does! Say that when we print a Coordinate object, want to show
>>> print (c)

<3, 4>

DEFINING YOUR OWN PRINT
METHOD

class Coordinate:
def init (self, x, y):
self.x = X
self.y =y

def distance(self, other):
Xx_diff sg= (self.x - other.x)**2
y diff sq= (self.y - other.y)**2
return (x_diff _sq + y _diff _sq)**0.5

def| str |(self):

eﬁ§ return ['<" + str(self.x) + "," + str(self.y) + ">" (égﬁ°
7oA st
CAREX.\ O
A Q?/(’\ 06 « S‘(\(\%
S ((\égo ?

WRAPPING YOUR HEAD
AROUND TYPES AND CLASSES

= can ask for the type of an object instance &
e
>>> ¢ = Coordinate(3,4) Cﬁ C
>>> print (c) O oCt X,
(e" 06 0\0\6 RGN
O
>>> print (type(c)) ‘\\e\.\\‘\)assco
. . C S
<class main .Coordinate> V56 d@ﬁ \ﬁ@C£
. . o0 £ O
" this makes sense since e ©
A3 ' 6’0\9
>>> print (Coordinate) C \S
0 C
class main .Coordinate> (o) x ©
>>> print (type (Coordinate)) O£€¢J>
<type 'type’> a(:O

" use isinstance () tocheckifan objectisa Coordinate

>>> print(isinstance(c, Coordinate))
True

SPECIAL OPERATORS

"+, -, =5, <, >, len(), print, and many others

https://docs.python.org/3/reference/datamodel.html#basic-customization

" like print, can override these to work with your class
= define them with double underscores before/after

add (self, other) - self + other

sub (self, other) —» self -other

eq (self, other) —~ self == other

1t (self, other) —~ self < other

__len (self) —~ len(self)
__str (self) — print(self)
... and others

https://docs.python.org/3/reference/datamodel.html#basic-customization

EXAMPLE: FRACTIONS

= create a new type to represent a number as a fraction

* internal representation is two integers
" numerator

= denominator

" interface a.k.a. methods a.k.a how to interact with Fraction objects
= add, subtract

= print representation, convert to a float
= invert the fraction

= [et’s write the code for this. The file containing this code will be pushed to course repository for
your reference.

STATIC ATTRIBUTES

= shatl;ed between all the instances of a class, or in other words they are class level attributes rather than instance
attributes

= static data attributes are defined in class scope ratherthanthe init scope

2
class Circle: 2° .\0\)’@
_ ‘_(\ ec)
PI = 3.14 3 o
X o

def _init_ (self, c, r): ,&600"’6@0“
self.center = c
) e‘\\
self.radius = r 6
6@
= if an instance changes the static attribute, it will changed for all other instances!

= static attributes usually are accessed by using the dot notation on class names:
= ¢ = Circle((0,0), 2)
= area = Circle.PI * c.radius™*2

STATIC ATTRIBUTES

= |ike static data attributes, we can have static methods

= static methods are also shared between all the instances, and their implementation is
independent of a specific instance!

= you declare a method as an static method by using a special decorator @staticmethod

class FlightSeat:

A
= e
counter 0 O(\e g/'as
A\ @X
: ORI
@staticmethod Qo

S
def increase_counter|(): A\
FlightSeat.counter += 1

OBJECT ORIENTED PROGRAMMING (OOP)

= EVERYTHING IN PYTHON IS AN OBJECT(and has a type)

= can create new objects of some type
= can manipulate objects

= can destroy objects
= explicitly using del or just “forget” about them

= python system will reclaim destroyed or inaccessible objects —called “garbage collection”

THE POWER OF OOP

= bundle together objects that share
= common attributes and

= procedures that operate on those attributes

= use abstraction to make a distinction between how to implement an object vs how to use the
object

= build layers of object abstractions that inherit behaviors from other classes of objects (see this
next session)

= create our own classes of objects on top of Python’s basic classes

