DS5010

Intro to programming for Data Science

LECTURE 6

TODAY

" review session 5

= PART |

= more on classes and objects
" inheritance

= PART Il: basic data structures
= Stack

= Queue
= LinkedList
= HashTable

REVIEW

= what are objects

= classes

= object oriented programming

IMPLEMENTING USING
HE CLASS vs THE CLASS

= write code from two different perspectives

implementing a new object type with using the new object type in
a class code
o define the class o create instances of the
o define data attributes object type
(WHAT IS the object) o do operations with them

o define methods
(HOW TO use the object)

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS

= class name is the type = instance is one specific object
class Coordinate: coord= Coordinate (1, 2)
= class is defined generically = data attribute values vary between instances
" use self torefertosome cl = Coordinate(1,2)
instance while defining the c2 = Coordinate(3,4)
class * c1 and c2 have different data
(self.x—-self.y) **2 attribute values cl.x and c2.x
» selfisaparameter to because they are different objects

methods in class definition
= class defines data and " instance has the structure of the class

methods common across all
instances

GETTER AND SETTER METHODS

class Animal:

def init (self, age):
self.age = age
self.name = None

def get age(self):

<§§ return self.age
3 def get name(self):
return self.name

def set _age(self, newage):

< self.age = newage

qua def set_name(self, newname=""):
self.name = newname

def str (self):
return "animal:"+str(self.name)+":"+str(self.age)

getters and setters should be used outside of class to access data attributes

AN INSTANCE and DOT NOTATION (RECAP)

= instantiation creates an instance of an object

a = Animal (3)

= dot notation used to access attributes (data and methods) @ ((\60666
though it is better to use getters and setters ‘,&(QO‘) ecod\
to access data attributes dax’bi‘(\o‘(
S
a.age ,,écﬁes e ©
2A°
a.get age()

INFORMATION HIDING

= author of class definition may change data attribute variable names

class Animal:

3
@ 2° def init (self, age):
o> <
c¢5 ‘ﬂ‘i self.years = age
(e5i§&@ def get _age(self):
N return self.years

= if you are accessing data attributes outside the class and class definition changes, may get
errors

= outside of class, use getters and setters instead use a.get age () NOT a.age
= good style
= easy to maintain code
= prevents bugs

PYTHON NOT GREAT AT INFORMATION
HIDING

= allows you to access data from outside class definition

print (a.age)

= allows you to write to data from outside class definition
a.age = 'infinite'

= allows you to create data attributes for an instance from outside class definition
a.size = "tiny"

" it’s not good style to do any of these!

DEFAULT ARGUMENTS

= default arguments for formal parameters are used if no actual argument is given

def set name(self, newname=""):
self.name = newname

= default argument used here
a = Animal(3) o
a.set _name() R\

print(a.get name()) \

= argument passed in is used here N
a = Animal(3) OQ§5*
a.set _name("fluffy") o~
print(a.get _name()) &t

HIERARCHIES

Image Credits, clockwise from top: Image Courtesy Deeeep, CC-BY-NC. Image Image Courtesy MTSOfan, CC-BY-NC-SA. Image Courtesy Carlos Solana, license CC-BY-NC-SA.
Image Courtesy Rosemarie Banghart-Kovic, license CC-BY-NC-SA. Image Courtesy Paul Reynolds, license CC-BY. Image Courtesy Kenny Louie, License CC-BY. Courtesy
Harald Wehner, in the public Domain.

HIERARCHIES

= parent class(superclass)

/ Animal \
= child class(subclass) S

* inherits all data and behaviors of parent class
= add more info Person Cat Rabbit
= add more behavior
= override behavior \
Student

INRERITANCE:
PARENT CLASS

.ec
class Animal/(object): 3 db\e e
def init (self, age): 0ﬁ&9?\d£«“°l««ﬁh
self.age = age) e\lessobﬁ‘eo(\s\(\?\ls e
self.name = None A" (@ a0
- A AR
. \C Op . \|a(. 6@6 \QO
def geE_age(sif). \O.ase‘d\“d\(\%\a\p\de QS°
o r'etur'n s<(e ii?e W \Io\)ca - a(
ef get name(self): R
return self.name 60366“%*
def set age(self, newage): Nt

self.age = newage
def set name(self, newname=""):

self.name = newname
def str (self):
return "animal:"+str(self.name)+":"+str(self.age)

INHERITANCE:

SUBCLASS T

& ISPESEIN
A <
class Cat{(Animal): & ;Kf//
N W e
00 ‘\00\\‘;\\06 def speak(self):
R\ \d“e‘ print("meow")
Q% def _str*_(self)‘
&8~ return "cat:"+str(self.name)+":"+str(self.age)
~
Q€
©
o¥® = add new functionality with speak ()

" instance of type Cat can be called with new methods
= instance of type Animal throws error if called with Cat’s new method

= 1init is not missing, uses the Animal version

WHICH METHOD TO USE?

= subclass can have methods with same name as
superclass

= for an instance of a class, look for a method name in
current class definition

= if not found, look for method name up the hierarchy
(in parent, then grandparent, and so on)

= use first method up the hierarchy that you found with
that method name

class Person|(Animal): Pm@ntdaxn5Anim
def init (self, name, age): a

Animal. init (self, age) “lanimay,
self.set name(name) Call Ay, ICmnnuqor
self.friends = [] add ney, alts Methog
d attripy;
e
def get friends(self): T

return self.friends
def add friend(self, fname):
if fname not in self.friends:
self.friends.append(fname)

def speak(self): :::::==——‘ nﬂ”"mﬂmd
S

print("hello")

def age diff(self, other):
diff = self.age-other.age
print(abs(diff), "year difference")
/ OV@rﬁO’@
def str (self): ~Str Animalg

I return "person:"+str(self.name)+":"+str(self.age) Oq .

g1n
import random from a dethods
Om mOd
: ule
class Student|(Person): Inheﬁu;P
def init (self, name, age, major=None): Anhhalatefaw7and
Person. init (self, name, age) tribyte
self.major = major adqg
S
hey, data

def change major(self, major):
self.major= major

def speak(self):

r = [random.random() fl
if r < 0.25: atin ro ; Om
print("i have homework") 1)

elif 0.25 <= r < 0.5:
print("i need sleep")
elif 0.5 <= r < 0.75:
print("i should eat")
else:
print("i am watching tv")

def str (self):
return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

OBJECT ORIENTED
PROGRAMMING

= create your own collections of data

= organize information

= division of work

= access information in a consistent manner
= add layers of complexity

= |like functions, classes are a mechanism for
decomposition and abstraction in programming

PART I

STACK

= 3 collection of items where the last added item is the first
item that can be retrieved/removed

STACK

= a linear sequence of data like list, and tuple

uawog Byeq

Last In - First Out = support two main operations

Push ‘ Pop = push: which adds an element to the collection

il ol = pop: which removes the most recently added element that was
Data Element Data Element not yet removed

P gt = unlike lists,

 Data Eloment Data Element = jtems can be added only at one end

Data Element * Data Elomont = you only have access to top item

| = you can only remove the top item

Stack Stack

= The order in which elements come off a stack gives
rise to its alternative name, LIFO (last in, first out).

STACK IMPLEMENTATION

= class name: Stack

= data attributes:
= container: we use a list to store stack elements
= capacity:aninteger representing the max number of elements that a stack instance can have

= methods:
= len :returnsthe size of stack
is full: returns True iff the number of elements in stack equals to capacity
" is empty: returns True iff the stack is empty
= push: adds a new element at the top of the stack
= pop: removes the top element form stack
= top: returns the top element without removing it
= str :thestring representation of a stack

: Ieft’s write the code for this. The file containing this code will be pushed to course repository for your
reference.

BUILT-IN STACK IN PYTHON?

= 1ist in python has stack interface which enables you to treat a list as a stack!

. %3
o s = 1]
o\

. \e““
s.append(1) ewgf
s.append(2) oY .

X
. e(\\.\‘\\'a\e‘\
print(s[-1]) xoP
X

e e\

s.pop() oo

STACK IN ACTION

= you are given a string like ‘abcd’, by using a stack try to get
the reverse of the given string.

STACK and RECURSION

= A stack is a recursive data structure. Here is a structural definition of a Stack:
o a stack is either empty or

° it consists of a top and the rest which is a stack

= recursion is closely tied to stack
= the recursive function calls are stored in a stack
= they will return on the LIFO principle

= you can devise iterative solutions for recursive problems
using an explicit stack!

0 QUEUE

= 3 collection of items where the
first added item is the first
item that can be
retrieved/removed

! v am—

QUEUE

Back Front = a linear sequence of data like list, and tuple, stack
Dequeve = support two main operations
Enqueue = enqueue: which adds an element to the collection
= dequeue: which removes the first added element that was not yet
removed

= unlike lists,
= items can be added only at one end

= you only have access to the front item (also back item if you have a
double ended queue)

= you can only remove the item at one end

= The order in which elements come off a queue gives
rise to its alternative name, FIFO (first in, first out).

QUEUE IMPLEMENTATION

= class name: Queue

: el
= data attributes: uﬂ\oou‘fd
" container: we use a list to store stack elements Capac‘w

=" methods:
= len :returnsthe size of queue

" is empty:returns True iff the queue is empty

" enqueue: adds a new element at the back of the queue

" dequeue: removes and returns the element at the front of the queue
= front: returns the element at the front without removing

: str :the string representation of the queue

= |et’s write the code for this. The file containing this code will be pushed to course repository for
your reference.

BUILT-IN QUEUE IN PYTHON'?

= queue module in python has a number of queue implementations.

e
| 60
from queue import Queue -\m\bo‘z\:;mdﬁeﬁe
oS
g A0 C\aod"\e
-“\{\a\'\l\“ieue q = Queue() @
\
Wi
e\® — K v
g.put(‘a’) N
q.put('b’) snove”
L9 i
qwae’ [print(q.empty())
e N
- ex\?P
e print(q.get()) et
. o\ e
veV

Queue does not
have an equivalent
method to front ()

QUEUE APPLICATIONS

= used when things don’t have to be processed immediately, but have to be processed in First In

First Out order like Breadth First Search. \Q,’o‘(\

N

e\“\ <2

N
¥

= When a resource is shared among multiple consumers. Examples include CPU scheduling, Disk
Scheduling.

= When data is transferred asynchronously (data not necessarily received at same rate as sent)
between two processes. Examples include 10 Buffers, pipes, file 10, etc.

LINKED LIST

= a linear collection of data elements, whose order is not given
by their physical placement in memory. Instead, each element
points to the next. It is a data structure consisting of a
collection of nodes which together represent a sequence.

= we have multiple variations of Linked Lists, like singly linked
lists and doubly linked lists. We only introduce singly linked
list here.

LINKED LIST 1s a
CHAIN of NODES

= each node contains: data, and a reference (in other words, a link) to the next node in the sequence

Node Node Node

NODE CLASS

class Node:

def init (self, data):
self.data = data
self.next = None # next node after self in a LinkedlList that self 1is

I_l N K E D I_‘ S—l— = a linear sequence of data like list, and tuple, stack, queue

= like lists
= jtems can be added anywhere in the sequence

= you can access any element in the sequence
= you can remove any elements

= unlike lists

" no constant access to elements (you need to start from head and follow links to
reach your desired element)

= removals and insertions takes places in constant time (in list, you may need to
shift elements)

= Linked lists are dynamic, so the length of list can increase or decrease as
necessary. Each node does not necessarily follow the previous one
physically in the memory.

Head

A —)I g —)l C)l D [— None

Data Next

LINKED LIST IMPLEMENTATION

= class name: LinkedList

= data attributes:
= head: the starting node in the linked list
= size:the number of nodes in the linked list

= methods:
= len_ :returnsthe size of linked list
" 1s empty: returns True iff the linked list is empty
= append:insert a given node at the end of linked list
= find:return a node which has the given data
" remove: removes a given node in the linked list

= str :the string representation of the linked list

: Ieft’s write the code for this. The file containing this code will be pushed to course repository for your
reference.

BUILT-IN LINKED LIST in PYTHON

= As of Python 3.7, doesn’t provide a dedicated linked list data type. There’s nothing like Java’s
LinkedList built into Python or into the Python standard library.

= Python does however include the collections.deque class which provides a double-
ended queue and is implemented as a doubly-linked list internally.

Under some specific circumstances you might be able to use it as a “makeshift” linked list. If
that’s not an option you’ll need to write your own linked list implementation from scratch.

HASH TABLE
TH-_'-_'- = a structure that can map keys to

1 values. A hash table uses a hash
function to compute an index, also
hash(key){...} 2 | called a hash code, into an array of
buckets or slots, from which the
3 *_’- desired value can be found.
u4)

HASH TABLE
= a collection of key-value pairs of dat keyt | - |
a coliection o1 Key-vailue pairs o dala _ Iex l P |

= support two main operations / \\"\/""——’ Male™s
PP b key_2 n‘ Fl-:;stln | 1 value_2

. . _ . . .) ‘\ h o

= put: adds a given key-value pair to the collection | ‘/\ /§: 2 P

= get: returns the value associated with a given key key_3 s = 3 value_4

= unlike other sequences we’ve seen so far
" items are not stored as a linear sequence

= adding/retrieving a pair to/from a Hash Table is expected 1o O:Qte(
to happen ir| constant time \i\)o\) nis V2

= the elements that come off a Hash Table do not necessarily
follow any specific order

INTERNAL STRUCTURE

BUCKETS

b\
ash 1
(\c’i\o(\ 0 an empt
w

S 1
3\(\3

2

n

INTERNAL STRUCTURE

BUCKETS

0

1
keyl

2

n

INTERNAL STRUCTURE

nof¥eY BUCKETS

0 = hash function accepts keys as input, and outputs
an integer which represents a bucket index

1 = the key-value pair like (k, v) will be put into a bucket,
m\ with index = h (k)

INTERNAL STRUCTURE

BUCKETS

e
0 we 1" e P\

1

INTERNAL STRUCTURE

rent BUCKETS

INTERNAL STRUCTURE

BUCKETS

key2 = value2

k_

keyl = valuel

INTERNAL STRUCTURE

ash functi® BUCKETS
aiffere™ \(ne\s’.ame
can retul 0

. e)(\
ind key2 value2

B - | I

INTERNAL STRUCTURE

BUCKETS
0
1 key2 | value2
. o emOW
1 gnen th othe

INTERNAL STRUCTURE

aln empt

M |
may € exs o1 BUCKETS
finallys e otners 0
d o :
a\:\e\l.\;a\ue pal’ 1 key2 value2

y

key3 value3 IEmmmmal keyN | valueN

key5 | value5

y

2 a1 keyl valuel

n a1 key4d valued

RETRIEVING VALUE for a KEY

BUCKETS

ed NEll 0

1 key2 | value2

ol _ev2_valuez.
@ 2 al keyl valuel ql key3 value3 JEZammmdl keyN | valueN

key5 | value5

n 1 keyd valued

RETRIEVING VALUE for a KEY

ucket BUCKETS

e .
ng

of \ey3 1 key2 value2

pash ko2 Lvalue2.
MQ)* keyl @ valuel <1 key3 value3 IREmmmdll keyN valueN

key5 | value5

n 1 key4d valued

RETRIEVING VALUE for a KEY

BUCKETS cor ey

\N,

1 key2 | value2

MQ)* keyl | valuel a1 key3 value3 IEEmmmdll keyN valueN
: |]
: |

n 1 keyd valued key5 | value5

RETRIEVING VALUE for a KEY

BUCKETS o 3s
0 if fo

1 key2 value2

MQ)* keyl ' valuel il key3 value3 JER
=k \C

keyN | valueN

}

Y/

1 key5 valueb

n A key4d valued

HASH FUNCTION

= the idea of hashing is to distribute the entries (key/value pairs) across an array of buckets

= 3 good hash function is a function which results in less collisions

= 3 critical statistic for a hash table is the load factor, defined as

n
load factor = ’

where
= nisthe number of entries occupied in the hash table.

= kis the number of buckets.
= as the load factor grows larger, the hash table becomes slower, and it may even fail to work

= the expected constant time property of a hash table assumes that the load factor be kept below
some bound

BUILT-IN HASH TABLE in PYTHON?

- dictionaries:

