
DS5010
Intro to programming for Data Science
LECTURE 2

TODAY
 review session 1

 iterations with for/while loops

 lists, tuples, dictionaries

mutable and immutable objects

 read/write files

REVIEW
 primitive objects and operators

 variables and types

 rules of sum and product

 branching and conditionals

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the while code block

 check <condition> again

 repeat until <condition> is False

while LOOP EXAMPLE
Guess and check game

 Sansa as the programmer generates a random integer between 0 – 20.

 Joffrey as the user will input his guess.

 if his guess matches Sansa’s number, a success message will be printed.

 otherwise, Joffrey has to keep guessing.

n = random.randint(0, 20)
g = int(input('Guess what number is in my mind?'))
while n != g:

g = int(input('Guess what number is in my mind?'))
print('That was right!!')

CONTROL FLOW:
while and for LOOPS
 iterate through numbers in a sequence

more complicated with while loop
n = 0
while n < 5:

print(n)
n = n+1

shortcut with for loop
for n in range(5):

print(n)

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

range(start,stop,step)
 default values are start = 0 and step = 1 and optional

 loop until value is stop -1

mysum = 0
for i in range(7, 10):

mysum += i
print(mysum)

mysum = 0
for i in range(5, 11, 2):

mysum += i
print(mysum)

break STATEMENT
 immediately exits whatever loop it is in
 skips remaining expressions in code block

 exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

break STATEMENT

 what happens in this program?

mysum= 0
for i in range(5, 11, 2):

mysum += 1
print(mysum)

mysum += i
if mysum == 5:

break

for VS while LOOPS
for loops

 know number of iterations

 can end early via break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of iterations

 can end early via break

 can use a counter but must initialize
before loop and increment it inside
loop

 may not be able to rewrite a
while loop using a for loop

TUPLES
 an ordered sequence of elements, can mix element types.

 cannot change element values, immutable

 represented with parentheses

te= ()

t = (2,"stark",3)

t[0]  evaluates to 2

(2,"stark",3) + (5,6) evaluates to(2,"stark",3,5,6)

t[1:2]  slice tuple, evaluates to ("stark",)

t[1:3]  slice tuple, evaluates to ("stark",3)

len(t)  evaluates to 3

t[1] = 4  gives error, can’t modify object

TUPLES
 conveniently used to swap variable values

 used to return more than one value from a function (will return to this when learning about
functions)

MANIPULATING TUPLES
aTuple :

 can iterate over tuples

nums = ()
words = ()
for t in aTuple:

nums = nums + (t[0],)
if t[1] not in words:

words = words + (t[1],)
min_n = min(nums)
max_n = max(nums)
unique_words_count = len(words)
print(min_n, max_n, unique_words_count)

LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
 usually homogeneous (i.e, all integers)

 can contain mixed types (not common)

 list elements can be changed so a list is mutable

INDICES AND ORDERING
a_list= []

L = [2, 'a', 4, [1,2]]

len(L)  evaluates to 4

L[0]  evaluates to 2

L[2]+1  evaluates to 5

L[3]  evaluates to [1,2], another list!

L[4]  gives an error

i= 2

L[i-1]  evaluates to 'a' since L[1]='a' above

CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value at that index

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern, iterate over list elements

 Notice list elements are indexed 0 to len(L)-1

 range(n) goes from 0 to n-1

total = 0
for i in range(len(L)):

total += L[i]
print(total)

total = 0
for e in L:

total += e
print(total)

OPERATIONS ON LISTS -ADD
 add elements to end of list with L.append(element)

 mutates the list!

L = [2,1,3]

L.append(5)  L is now [2,1,3,5]

 what is the dot?
 lists are Python objects, everything in Python is an object
 objects have data
 objects have methods and functions
 access this information by object_name.do_something()
 will learn more about these later

OPERATIONS ON LISTS -ADD
 to combine lists together use concatenation, + operator, to give you a new list

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2  L3 is [2,1,3,4,5,6]
L1, L2 unchanged

L1.extend([0,6])  mutated L1to [2,1,3,0,6]

OPERATIONS ON LISTS -REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the removed element

 remove a specific element with L.remove(element)
 looks for the element and removes it
 if element occurs multiple times, removes first occurrence
 if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]
del(L[1])  mutates L = [1,3,7,0]
L.pop()  returns 0 and mutates L = [1,3,7]

CONVERT LISTS TO STRINGS AND BACK
 convert string to list with list(s), returns a list with every character from s an element in L

 can use s.split(), to split a string on a character parameter, splits on spaces if called without a
parameter

 use ''.join(L) to turn a list of characters into a string, can give a character in quotes to add
char between every element

s = "I<3 DS"  s is a string

list(s)  returns ['I','<','3',' ','D',’S’]

s.split('<‘)  returns ['I', '3 DS’]

L = ['a','b','c’] L is a list

''.join(L)  returns "abc"

'_'.join(L)  returns "a_b_c"

OTHER LIST OPERATIONS
 sort() and sorted()

 reverse() and reversed()

 and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L)  returns sorted list, does not mutate L

L.sort()  mutates L=[0,3,6,9]

reversed(L) returns a reversed list, does not mutate L

L.reverse() mutates L=[9,6,3,0]

https://docs.python.org/3/tutorial/datastructures.html

LISTS IN MEMORY
 lists are mutable

 behave differently than immutable types

 is an object in memory

 variable name points to object

 any variable pointing to that object is affected

 key phrase to keep in mind when working with lists is side effects

ALIASES
 hot is an alias for warm–changing one changes the other!

 append() has a side effect

CLONING A LIST
 create a new list and copy every element using chill = cool[:]

LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still
possible after mutation

MUTATION AND ITERATION
 avoid mutating a list as you are iterating over
it

L1 is [2,3,4] not [3,4] Why?

 Python uses an internal counter to keep track of
index it is in the loop

 mutating changes the list length but Python doesn’t update the counter
 loop never sees element 2

DICTIONARY
 so far, can store using separate lists for every info
names = ['Arya', 'Tyrion', 'Robert', 'Elia']

grade = ['A+', 'A', 'A-', 'A']

course = [5800, 5010, 5020, 7600]

 a separate list for each item

 each list must have the same length

 info stored across lists at same index, each index refers to info for a different person

HOW TO UPDATE/RETRIEVE STUDENT
INFO
student = input()
i = names.index(student)
grade = grades[i]
course = courses[i]
print(course, grade)

 messy if have a lot of different info to keep track of
 must always index using integers
 must remember to change multiple lists

A BETTER AND CLEANER WAY –
A DICTIONARY
 nice to index item of interest directly (not always int)

 nice to use one data structure, no separate lists

A PYTHON DICTIONARY
 store pairs of data

• key
• value

grades = {'Arya':'A+', 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}

'Arya' 'A+'

'Tyrion' 'A'

'Robert' 'A-'

'Elia' 'A'

key1 val1 key2 val2 key3 val3 key4 val4

DICTIONARY LOOKUP
 similar to indexing into a list

 looks up the key

 returns the value associated with the key

 if key isn’t found, get an error

grades = {'Arya':'A+’, 'Tyrion':'A', 'Robert':'A-', 'Elia':'A’}

grades['Arya'] → evaluates to 'A+'

grades['Sylvan'] → gives a KeyError

'Arya' 'A+'

'Tyrion' 'A'

'Robert' 'A-'

'Elia' 'A'

DICTIONARY OPERATIONS
 add an entry
grades['Theon'] = 'B'

 test if key in dictionary
'Robert' in grades → returns True
'Daniel' in grades → returns False

 delete entry
del(grades['Arya'])

'Arya' 'A+'

'Tyrion' 'A'

'Robert' 'A-'

'Elia' 'A'

DICTIONARY OPERATIONS
grades = {'Arya':'A+', 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}

 get an iterable that acts like a tuple of all keys

grades.keys() → returns ['Arya', 'Tyrion', 'Robert', 'Elia’]

 get an iterable that acts like a tuple of all values

grades.values() → returns ['A+', 'A', 'A-', 'A']

DICTIONARY KEYS and VALUES
 values

• any type (immutable and mutable)
• can be duplicates
• dictionary values can be lists, even other dictionaries!

 keys
 must be unique
 immutable type (int, float, string, tuple, bool)
 actually need an object that is hashable, but think of as immutable as all immutable types are hashable

 careful with float type as a key

 no order to keys or values! (As of python 3.6+ insertion order is guaranteed by language)

d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

list vs dict
 ordered sequence of
elements

look up elements by an
integer index

indices have an order

index is an integer

matches “keys” to
“values”

 lookup one item by
another item

 no order is guaranteed
(as of python 3.6+
insertion order is
guaranteed)

 key can be any
immutable type

READING FILES
What you need in order to read information from a file

1. open the file and associate the file with a variable.

2. a command to read the information.

3. a command to close the file.

READING FILES
 use open statement to open a file for reading:

f = open('mydata.txt')

 you can read the entire content as a string

content = f.read()

 or, read just one line of the file at a time

line = f.readline()

 or, read all the lines, as a list of lines

lines = f.readlines()

 don’t forget to close the file after reading is finished

f.close()

ITERATING THROUGH LINES
 you can iterate through the lines of a file using a for loop

f = open('mydata.txt')

for line in f:
<statement>

f.close()

USING with PATTERN
 we always forget to close the files, after we are finished using them

 a good pattern is to use with statements in python so the close operation will be done
automatically.

with open('mydata.txt') as f:
for line in f:

<statements>

WRITING INTO FILES
What you need in order to read information from a file

1. open the file and associate the file with a variable.

2. decide whether you want to delete all the preexisting content and write fresh
or you want to append at the end of the file

3. a command to write into the file.

4. a command to close the file.

WRITING AS A NEW FILE
 use open statement with ‘w’ option to open the file for writing as new file

f = open('data.txt', 'w')

 write content into file using write method

f.write('blah blah blah')

 close the file so the content that you have written gets saved

f.close()

APPENDING TO A FILE
 the same as before, just open the file with ‘a’ option.

f = open('data.txt', 'a')

USING with PATTERN
 a good pattern is to use with statements in python so the close operation will be done
automatically.

 Assume new_lines is a list of strings, which we want to append each as a new line in
data.txt

with open('data.txt', 'w') as f:
for l in new_lines:

f.write(l)
f.write('\n')

	DS5010�Intro to programming for Data Science
	TODAY
	REVIEW
	CONTROL FLOW:�while LOOPS
	while LOOP EXAMPLE
	�CONTROL FLOW: �while and for LOOPS
	�CONTROL FLOW: for LOOPS
	�range(start,stop,step)
	�break STATEMENT
	break STATEMENT
	�for VS while LOOPS
	�TUPLES
	TUPLES
	�MANIPULATING TUPLES� aTuple :
	�LISTS
	�INDICES AND ORDERING
	�CHANGING ELEMENTS
	ITERATING OVER A LIST
	�OPERATIONS ON LISTS -ADD
	�OPERATIONS ON LISTS -ADD
	�OPERATIONS ON LISTS -REMOVE
	�CONVERT LISTS TO STRINGS AND BACK
	OTHER LIST OPERATIONS
	�LISTS IN MEMORY
	�ALIASES
	�CLONING A LIST
	LISTS OF LISTS OF LISTS OF….
	�MUTATION AND ITERATION
	DICTIONARY
	HOW TO UPDATE/RETRIEVE STUDENT INFO
	A BETTER AND CLEANER WAY – �A DICTIONARY
	A PYTHON DICTIONARY
	DICTIONARY LOOKUP
	DICTIONARY OPERATIONS
	DICTIONARY OPERATIONS
	DICTIONARY KEYS and VALUES
	list vs dict
	READING FILES
	READING FILES
	ITERATING THROUGH LINES
	USING with PATTERN
	WRITING INTO FILES
	WRITING AS A NEW FILE
	APPENDING TO A FILE
	USING with PATTERN

