
DS5010
Intro to programming for Data Science
LECTURE 7

TODAY
§ review session 1
§ review session 2
§review session 3
§review session 4
§review session 5
§review session 6

REVIEW SESSION 1

basic python objects and operations

conditionals

branching

Basic data types in python
Int Any integer.
Float Floating point number (64 bit precision)
Complex Numbers with an optional imaginary component.
Bool True, False
Str A sequence of characters (can contain unicode characters).
Bytes A sequence of unsigned 8-bit entities, used for manipulating binary
data.
NoneType (None) Python’s null or nil equivalent, every instance of None is
of NoneType.

Basic operators in python
= Assignment
+ Addition
- Subtraction

* Multiplication
/ Division
// Floor Division
% Modulo

** Power

Comparison Operators
== Equal To
> Greater Than

>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To
!= Not Equal

Boolean Operators and or not

Expressions
Combine operators and objects
<object> <operator> <object>

Are these legal python
expression?
5 + “abc”

5 >= 2 == 2
if (x < y < z) :
“a” + “b”

Input and Output
Collect data from the user, you
can also provide a prompt

input("Type anything... ")

Print – can accept a comma
separated list of values
print(”x is “, x_int)

… or you can concoct your own
string with the + operator
print("x = " + “xxx”)

String data objects
Every string object has a length
len(“abs”) and each character in
the string has a position. The
position can be used to extract
characters from the string.
Positions are 0 based, and the
last character can also be
indexed with -1

You can extract a substring by
using the colon index operator
string[start:end-1] end-start are
the number of characters
extracted
string = “abcdefg”
string[2:4] == ???

string[:4] == ???
string[4:] == ???

Boolean operators and bool casting

Other data types can be cast to
the bool type. There are specific
values that map to the False
values

A B not A A and B A or B

True True False True True

True False False False True

False True True False True

False False True False Fakse

Type False value

int 0

float 0

complex 0+0i

str “”

list []

dict {}

tuple ()

set set()

NoneType None

Branching in a program
One condition
tested

One condition
tested with a
branch on the
condition

Multiple conditions
tested but only one
set of instructions
executed

What output is produced?
a = 10
b = 3
c = 5

If (a < c):
print(“First condition”)

elif (c > 5):

print(“Second condition”)
elif (b < a):

print(“Third condition”)
else

print(“Default condition”)

Order matters!!

REVIEW SESSION 2

ITERATION WITH FOR
AND WHILE LOOPS

LIST TUPLES,
DICTIONARY

MUTABLE AND
IMMUTABLE OBJECTS

FILE I/O

Format for a while loop
while condition:

body of loop
body of loop

outside loop

for iterator in sequence:
body of loop
body of loop

outside loop

n = 0
while n < 5:

print(“Hello world”)

n = n + 1

for n in range(5):
print(“Hello world”)

The break command terminates a loop
It allows the current loop
instantiation to terminate

It only terminates one level of a
loop – so will not terminate all
levels of a nested loop

If j == 3 what is the next printout?

for i in range 5:
print(“At begin: outer loop”)
for j in range 6:

if j == 3:
break;

print(“pass break”)
print(“At end: outer loop”)

Tuples
Tuples are a collection of comma separated values. They are
immutable – this means once assigned a value, the tuple cannot be
changed. Once created, a tuple is analogous to ROM (read only
memory).
An empty tuple t0 = ()
A tuple with one element is t1 = (1,)
A tuple with 5 elements t4=(“iris”, “pansy”, “sage”, “thyme”)

A nested tuple t2 = (t1,t4)

Operators on tuples
Repetition can be applied
to a tuple *
Addition can be applied to a
tuple +
Slicing can be applied to a
tuple (n:m)

t4=(“iris”, “pansy”, “sage”, “thyme”)
What is the result of ?

t4*3

t4 + (“marigold”)

t4(2:3)

Discussion

Tuples

§ Break up into groups and discuss the
utility of the tuple object.
§Consider the benefit of a mutable object.

Response: Tuples

Swapping data values

Returning multiple values from a function

Ensuring a data value is not updated

The list data object
An ordered collection of
elements. Similar to a string, an
element can be retrieved with an
index.
A list is denoted with square
brackets:
Empty = [] L = [1,2,3,4]

A list is mutable, both in the
elements and in its size.

A common operation is to iterate
over a list.
val = 0

for e in L:
val += e

Some useful list methods
Method Description

Lisr.append Add a member to the end of the list

List.insert(index,value) Inserts a value at a particular index

List.extend(List_too) All values in List_too are added to List

List.remove(value) Removes the first instance of value from List

List.pop() Returns and removes the last element in the list

List.pop(index) Returns and removes the element at position index

List.clear() Remove all values from the list

List.index(value) Returns the position of the first occurring value of value

List.copy() Clones a List

List operation examples
L=[1,2,3,4]
L.append(5) L becomes [1,2,3,4,5]
L.remove(2) L becomes [1,2,4,5]

L.pop() L becomes [1,3,4]
T = L[:] clone a list

Delete by position, del(L[1]), removes
3 from L, L=[1,4]

The string’s join method makes a string
out of a list of characters
“”.join(“a”,”b”)

The list operator converts a string to a
list

The split operator will split a string into
a list

Dictionary data object
Associate a data value with a key value. Allows you to index a data
collection via a key value.
An empty dictionary is represented as {} If tel =

Then tel{‘Kay’} will generate a lookup error.

Key Value

Robert 555-5555

Lisa 555-1010

Xi 555-1212

Operations on a dictionary
Add an object
tel{“Kay”} = “555-1213”
Look up a value

‘Kay’ in tel
tel.get(“Kay”) tel.get(”Sam”)
returns the value None
tel[“Sam”] generates an error

Delete a value Del tel{“Lisa”}

tel.keys returns an iterable list of
the key values
tel.values returns an iterable list
of the values values
Requirement: key values must be
unique and immutable

REVIEW SESSION 3
§ permutations
§ combinations
§ user-defined functions

Permutation
Permutation of a set of objects is an ordered arrangement of those
objects
Example:

The wedding party:
Bride, Groom, BMother, BFather, GMother, GFather, bestMan,
maidHonor, Usher1, Usher2, bride’sMaid1, bride’sMaid2
How many ways are there of arranging them in a row for a picture?

12!

Permutation with selection
What if we wanted to select a subset of elements from a set – where
order still matters . The is typically called an r-Permutation, an
ordered arrangement of r elements of a set.

I want to take a photo of 6 people in the wedding party. How many
different permutations are there?
P(n,r) = n(n-1)(n-2) . . . (n – r + 1) = n! / (n-r!)
In this example duplicates are not allowed. What if duplicates are
allowed?

Permutations with repetitions
Let’s say there are 24 flavors of ice cream as Rancatore’s. The order
that I taste the ice cream is important since it may influence my next
choice of ice cream tasting. How many permutations are there if I am
allowed to taste 6 flavors and I am allowed to sample a flavor more
than once?

24**6, Since I have 6 samples and for each sample I have 24
choices.
First choice 24 to choose from , second choice 24 to choose from
, … sixth choice 24 24*24*24*24*24*24

Combination
Combination of a set of objects is an arrangement of those objects
where order does not matter
r-combination of elements of a set is an unordered selection of r
elements of the set, i.e. a subset of the set with r elements.
Example:
Eight members of the wedding party are to do a traditional circle
dance. How many different groups of eight can be selected?

()
!If 0 are integers, (,) .

! !
n nr n C n r
r r n r
æ ö

£ £ = =ç ÷ -è ø12! / 4!*8!

Functions in python
Functions introduce the concepts
of scope, abstraction,
decomposition, and modularity

Break up into groups to discuss
these concepts in respect to
functions

Response
Function

Functions limit the scope for the variables
within it. Variables inside the function are
not known outside of the function (Scope)

A function can be used by a programmer
without the programmer knowing how it
works. The programmer just needs to know
the function’s input values (parameters)
and its output values (Abstraction)
A function allows the code in the function
to be used (or called) from different points
in the program (Modularity)

It allows a large problem to be broken up
into simpler problems (Decomposition)

Example
Use the def keyword to define a function
def action(ready):

if (ready) :

print(’Time to go’)
return True

return False

action(True)

Should return a value,
since the default is to
return the None value

Arguments as functions
Functions can be written such that accepts a function argument. This
allows a programmer to actually change the functionality of the
function with its argument.

Python provides built in functions that accept functions as
arguments. The filter() and the map() function

REVIEW SESSION 4
§ recursion
§ induction
§ lambda expressions

Inductive proof
Start with a base case – show what you are
trying to prove is true for the base case, usually
n = 1 (but can be a different value).

Show that if n=k is true, then n=k+1 is also true

We typically assume that n=k is true, we use
this assumption to show that it is true for
n=k+1

Like the domino affect – one falls they all fall

Steps in induction

Example proof
Proof by induction: is 3**(n) -1 a multiple of 2 ?
Base case: let n = 1, 3**1 = 1 so 3- 1 = 2 , 2 is a multiple of 2.
Assume: 3**(k) -1 is a multiple of 2 – show that 3**(k+1) -1 is a
multiple of 2.
3**(k+1) +1 == 3*3**(k) -1 , we can break 3*3**(k) into 1*3**(k) +
2*3**(k) . The first term 3**(k) -1 is a multiple of 2 due to the
assumption. The second term is a multiple of 2, since 2 is a factor of
the term.
Hence we showed that 3**(n) -1 a multiple of 2 for all n

Recursion
Recursion is related to induction, since it allows us to define a
concept in terms of itself. This is especially useful for series of
numbers or for algorithms that perform a specific operation until it
hits a terminating state.
Recursion:
find the solution for the base case
assume you have the solutions for all of the smaller inputs

show the bigger problem can be solved using the solution to the
smaller problems

Divide and conquer
Break the problem up into smaller problems
Have a function call itself to simplify the problem (via the passed
arguments) that needs to be solved

Function terminates at a base case
Each invocation of the function creates a separate scope for the
different instantiations of the function variables
When a function terminate control flow is returned to the calling
level

Code Review

def isPalindrome(s):

def toChars(s):
s = s.lower()
ans = ''
for c in s:

if c in 'abcdefghijklmnopqrstuvwxyz':
ans = ans + c

return ans

def isPal(s):
if len(s) <= 1:

return True
else:

return s[0] == s[-1] and isPal(s[1:-1])

return isPal(toChars(s))

Higher Order Functions
A higher order function is a function that takes a function as an
argument
There are built-in higher order functions in python:

map – apply a function to an iterable data object and return it as a
result
filter – filter applies a function to each element in an iterable, if the
function returns True, then that element is returned in the result, if
returns False, not part of the result

Anonymous functions
Lambda expressions allows one
to create a function without a
name. This is useful to do if you
are passing the function to
another function. The definition
of the function is the value that
gets returned

def square(y):
return y*y;

print(square(5))

g = lambda x: x*x
print(g(5))

A lambda is useful with map and filter
li = [5, 7, 22, 97, 54, 62, 77, 23,
73, 61]
final_list = list(filter(lambda x:
(x%2 != 0) , li))
print(final_list)

map(lambda x : x*2, [1, 2, 3, 4])

map(lambda x, y : x*y,

[1, 2, 3, 4], [5,6,7,8])

REVIEW SESSION 5
§ what are objects
§ classes of objects

Objects in the real world
Humans have been classifying objects in the real world since the
dawn of day. These categories or types group instances of objects by
similar characteristics or attributes

Attributes can also describe behavior, what are the types of actions
object instances in this class can do
The state of an object may change/evolve over time, but that object
remains the same existence! This change is usually done by means of
behavioral attributes.
If we are grouping objects into a type, we will want to determine
how similar these objects are to each other

Objects in python
Python supports many different types of objects
Every object has:
• a type
• an internal data representation(primitive or composite)
• a set of procedures for interacting with the object

• object is an instance of a type
◦ For example, 1234 is an instance of an int, "hello" is an instance of a string

Discussion

Instantiation

§ Break up into groups and discuss the
difference between object instantiation and
and object design .

Response

Use of an object versus encapsulating the
definition of an object

Program design incorporates both activities, one
process provides feedback to the other process

Data encapsulation

Code Review

§ Review the Objects:
§Coordinate and Fraction
§7Example_class.py

REVIEW SESSION 6
§ Defining and using user-defined classes
§ Object oriented programming

HIERARCHIES

Anim
al

HIERARCHIES

§ parent class(superclass)

§ child class(subclass)
§ inherits all data and behaviors of parent class
§add more info
§add more behavior
§override behavior

Discussion

Object Orient
Programming

§ Break up into groups and describe the
benefits of object orient programming.

Response
§create your own collections of data
§ organize information
§ division of work

§ access information in a consistent manner
§ address complexity by stratifying it into layers
§like functions, classes are a mechanism for
decomposition and abstraction in programming

Code Review

§ Review the animal hierarchy:
§7Example_hierarchy.py

Discussion

Stack
vs.
Queue

§ Discuss the definition of a stack and a
queue. Identify their similarities and
differences

This Photo by Unknown Author is
licensed under CC BY

http://www.flickr.com/photos/hktang/4243300265/
https://creativecommons.org/licenses/by/3.0/

Response
Stack: a collection of items where the last added
item is the first retrieved item. All other items are
masked by the item on the top.

Queue: a collection of items where the first
added item is the first item that can be retrieved.
All other items are masked by the item on the
top.

Code Review

§ Review the stack and queue class:
§7Example_stack_queue.py

Discussion

Linked list

§ Discuss the definition of a linked list.
Discuss how it varies from a simple built in
list, a stack and a queue.

Response
Linked list: a data structure consisting of a
collection of nodes which together represent a
sequence. It is not contiguous in memory.

Benefit? the memory reserved for the link list
can be increased or reduced at runtime. items
can be added anywhere in the sequence

LINKED LIST is a
CHAIN of NODES

…

§ each node contains: data, and a reference (in other words, a link) to the next node in the sequence

Code Review

§ Review the stack and queue class:
§7Example_stack_queue.py

Discussion

Hash table

§ Discuss the utility of a hash table. Discuss
how it varies from a linked list, simple built
in list, a stack and a queue.

This Photo by Unknown Author is licensed under CC BY-SA

http://commons.wikimedia.org/wiki/File:Hash_table_linked_999.svg
https://creativecommons.org/licenses/by-sa/3.0/

Response
§Hash table: a structure that can map keys to
values. A hash table uses a hash function to
compute an index, also called a hash code, into
an array of buckets or slots, from which the
desired value can be found. It uses a hash
function to disperse the entries across the
buckets. Like a linked list, items are not stored in
sequence fashion but the hash buckets can be
contiguous.. By using a good hash function,
hashing can work well. Under reasonable
assumptions, the average time required to
search for an element in a hash table is O(1).

Quick Lookup !!

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

an empty hash table

a hash function

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

a key-value comes in

key1

value1

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

first compute the hash of key

key1

value1

§ hash function accepts keys as input, and outputs
an integer which represents a bucket index

§ the key-value pair like (k,v) will be put into a bucket,
with index = h(k)

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

in each bucket

we have a linked list

of key value pairs

key1 value1

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h(key2) is different

from h(key1)

key1 value1h

key2

value2

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

so it will be stored

in a different bucket

key1 value1h

key2 value2

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

hash function for

different keys

can return same

index!

key1 value1h

key2 value2

h

key3

value3

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n
if a bucket is not empty

then the new pair will

be appended to the

end of the linked list in

that bucket

key1 value1h

key2 value2

h key3 value3

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

finally, some buckets may remain empty

and some others contain linked lists of

key-value pairs

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

how to find the

associated value

to key3?

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

first find the bucket

index, by computing

hash of key3

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

now, search for key3 in the linked list

inside the bucket

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

if found, return associated value

otherwise raise KeyError

HASH FUNCTION
§ the idea of hashing is to distribute the entries (key/value pairs) across an array of buckets
§ a good hash function is a function which results in less collisions
§ a critical statistic for a hash table is the load factor, defined as

𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑛
𝑘

where
§ n is the number of entries occupied in the hash table.
§ k is the number of buckets.

§ as the load factor grows larger, the hash table becomes slower, and it may even fail to work
§ the expected constant time property of a hash table assumes that the load factor be kept below
some bound

