DS5010

Intro to programming for Data Science

LECTURE 2

TODAY

" review session 1

iterations with for/while loops

lists, tuples, dictionaries

mutable and immutable objects

read/write files

REVIEW

= primitive objects and operators

= variables and types

= rules of sum and product

= branching and conditionals

CONTROL FLOW:
while LOOPS

while <condition>:

<expression>

<expression>

" <condition> evaluates to a Boolean
" if <condition> is True, do all the steps inside the while code block
= check <condition> again

= repeat until <condition> isFalse

while LOOP EXAMPLE

Guess and check game

= Sansa as the programmer generates a random integer between 0 — 20.
= Joffrey as the user will input his guess.

= if his guess matches Sansa’s number, a success message will be printed.
= otherwise, Joffrey has to keep guessing.

n = random.randint(0, 20)
g = int(input('Guess what number is in my mind?'))
while n != g:

g = int(input('Guess what number is in my mind?'))
print('That was right!!")

CONTROL FLOW:
while and for LOOPS

" jterate through numbers in a sequence

more complicated with while Loop

n =0

while n < 5:
print(n)
n = n+l

shortcut with for Loop
for n in range(5):
print(n)

CONTROL FLOW: for LOOPS

for <variable> 1n range (<some num>) :

<expression>

<expression>

= each time through the loop, <variable> takes a value
= first time, <variable> starts at the smallest value
= next time, <variable> gets the prev value + 1

= etc.

range (start, stop, step)

= default values are start = 0 andstep = 1 and optional

= l[oop until valueis stop -1

mysum = O

for i in range(7, 10):
mysum += 1

print(mysum)

mysum = O

for i in range(5, 11, 2):
mysum += 1

print(mysum)

break STATEMENT

= immediately exits whatever loop it is in

= skips remaining expressions in code block

= exits only innermost loop!

while <condition 1>:
while <condition 2>:
<expression a>
break
<expression b>

<expression c>

break STATEMENT

mysum= 0
for i in range(5, 11, 2):

mysum += i
if mysum == 5:

mysum += 1
print(mysum)

= what happens in this program?

for VS while LOOPS

while loops

for loops

unbounded number of iterations

know number of iterations

: = canend earlyviabreak

= canend earlyviabreak y

= can use a counter but must initialize
before loop and increment it inside
loop

® uses a counter

= canrewritea for loop

usingawhile loo
g P = may not be able to rewrite a

while loopusinga for loop

TUPLES

= an ordered sequence of elements, can mix element types.

= cannot change element values, immutable ‘oe(
W\
= represented with parentheses @we e!
x\)@

t = (2,"stark", 3)

t[0] - evaluatesto 2

(2,"stark",3) + (5,6)—> evaluatesto(2,"stark",3,5,6 00{0"“3?\3 &
t[1:2] - slice tuple, evaluatesto ("stark"|,) eﬁ@ﬁﬂsa'&.@e\e&eﬂ
t[1l:3] - slice tuple, evaluatesto ("stark", 3 ‘(\;\Q@oﬁe
len(t) - evaluatesto 3

t[1l] = 4 - gives error, can’t modify object

TUPLES

= conveniently used to swap variable values

X = ¥ temp = X 1% ¥ = (¥ Xl

= used to return more than one value from a function (will return to this when learning about
functions)

MANIPULATING TUPLES & o

aTuple: (@D, @D, (l/l))

= can iterate over tuples

Qe Nums = () /)
Rl words = ()]
e

for t in aTuple: T ?)
o nums = nums + (t[@]:) if not already in words
@e’ﬁo o if t [1] not in words: i.e. unique strings from aTuple

words = words + (t[1],)
min_n = min(nums)
max_n = max(nums)
unique_words count = len(words)
print(min_n, max_n, unique_words_count)

LISTS

ordered sequence of information, accessible by index

a list is denoted by square brackets, []

a list contains elements
= usually homogeneous (i.e, all integers)

= can contain mixed types (not common)

list elements can be changed so a list is mutable

a list=|[]

L =12, 'a', 4, [1,2]]

len (L) =2 evaluatesto4

L[0] - evaluatesto 2

L[2]+1 = evaluatesto5

L[3] - evaluatesto [1, 2], another list!

L[4] —> gives an error

1= 2

L[1i-1] > evaluatesto'a'sinceL.[1]='a' above

CHANGING ELEMENTS

= |ists are mutable!

= assigning to an element at an index changes the value at that index

L =1[2, 1, 3]

L[1] = 5

=Lisnow [2, 5, 3], notethisisthe same object L

ITERATING OVER A LIST

= compute the sum of elements of a list

i ,0%‘51
= common pattern, iterate over list elements ‘%eﬁfi‘e@xe
("Bﬁ;ﬁ\\é‘. .
o {(\g‘(\x
3\3 Q,C"\\"
total = © total = 9 W
for i in range(len(L)): for e in |L:
total += L[1i] total += e
print(total) print(total)

= Notice list elements are indexed O to 1len (L) -1

" range (n) goesfrom 0 ton-1

OPERATIONS ON LISTS -ADD

= add elements to end of list with L.. append (element)

= mutates the list!
L = [2,1,3]
L.append(5) = Lisnow [2,1,3,5]

\

= what is the dot?

lists are Python objects, everything in Python is an object
objects have data

objects have methods and functions

access this information by object_name.do_something()
will learn more about these later

OPERATIONS ON LISTS -ADD

= to combine lists together use concatenation, + operator, to give you a new list

mutate list with L. extend (some 1list)

L1 = [2,1,3]
L2 = [4,5,0]

L3 = L1 + L2 - 13 is[2,1,3,4,5,6]
L1, L2 unchanged

Ll.extend([0,6]) = mutatedL1to [2,1,3,0,6]

OPERATIONS ON LISTS -REMOVE

= delete element at a specific index with del (L[index])

= remove element at end of list with L.. pop (), returns the removed element

= remove a specific element with L. remove (element)
= looks for the element and removes it
= if element occurs multiple times, removes first occurrence
= if element not in list, gives an error

" L =12,1,3,6,3,7,0] # do below in order

’i.\(\es- o -
A\ e(a"-‘o L.remove (2)—> mutatesL = [1,3,6,3,7,0]
of xa© L.remove (3) mutatesL. = [1,6,3,7,0]

9
W
‘f‘:pex;x‘a"< del (L[1]) = mutatesL = [1,3,7,0]
_ L.pop () = returnsOand mutatesL = [1,3,7]

CONVERT LISTS TO STRINGS AND BACK

= convert string to list with 1ist (s), returns a list with every character from s an element in L

"canuse s.split (), tosplit astring on a character parameter, splits on spaces if called without a
parameter

"use ''.join (L) toturn alist of characters into a string, can give a character in quotes to add
char between every element

s = "I<3 DS" > s isastring

list (s) -2 returns ['I','<','3'," ','D',’S’"]
s.split('<') > returns ['I', '3 DS’]

L =1["a','b',"'c’]> L isalist

"'.Join (L) - returns "abc"

' '.Jjoin(L) > returns"a b c"

OTHER LIST OPERATIONS

= sort() and sorted()

= reverse() and reversed()

= and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

sorted (L) =2 returns sorted list, does not mutate L
L.sort () = mutatesL.=[0, 3, 6, 9]

reversed (L) =2 returns a reversed list, does not mutate L

L.reverse ()2 mutatesL.=[9,6,3,0]

https://docs.python.org/3/tutorial/datastructures.html

LISTS IN MEMORY

= |ists are mutable

= behave differently than immutable types

" js an object in memory

= variable name points to object

= any variable pointing to that object is affected

= key phrase to keep in mind when working with lists is side effects

ALIASES

= hot is an alias for warm—changing one changes the other!

=" append () has aside effect

1 a=1 .
2 b = 3 ['red', 'yvellow', 'orange', 'pink']

. ['red', 'yellow', 'orange', 'pink’']
% print(a)
4 print(b) 4
- Frames Objects
5 warm = ['red’, 'yellow', 'orange’] Global frame list

0 1 2 3

7 hot = warm a 1 "red" | "yellow" | "orange" | "pink"
2 hot.append('pink") b 1
9 print(hot) warm | ¢
10 print(warm) hot |

CLONING A LIST

= create a new list and copy every element using chill = cool[:]

‘green’, ‘grey’]

1 cool = ["blue’,

2 chill = cool[:]

% chill.append(black’)
4 print(chill)

5 print(cool)

["blue', 'green', 'grey', 'black']
["blue', ‘'green', 'grey']

A
Frames Objects
Global frame list
"/_.--'—-—-—--_), 0 1
cool L_ "blue "green” "grey"
chill
list
0 1
llhluel! "g[""EEﬂ" "g[""EF"

"black"

LISTS OF LISTS OF LISTS OF....

= can have nested lists

[['vellow', 'orange'], ['red']]

. . ["red', 'pink']

= side effects still [['vellow', 'orange'], ['red', 'pink']]
possible after mutation

P
1 warm = ['yellow', ‘'orange'] Frames Objects
2 hot = ["red’] Global frame list
3 y — 0 1
E hr‘%ghtcnlnrs [warm] WA L "yellow" | "orange”
4 brightcolors.append(hot) Lt L
5 print(brightcolors) brightcolors L .
5 hot.append(' pink") ’ - o Ko
7 print(hot) - -
¢ print(brightcolors)

MUTATION AND ITERATION

= avoid mutating a list as you are iterating over

L1l = [lr 2: 3r 4]
50— [B B B

tar & in Ll: Ll copy Ao L1[:]
e g, s g tor e in Ll cepys

“ L1.remove (e) J 1t eLinrgrzn;ve ()

ole

c\one " (:,O'@‘JT
» Python uses an internal counter to keep track of t‘natb 6-(con€
index it is in the loop doeSN
» mutating changes the list length but Python doesn’t update the counter
» loop never sees element 2

L1is [2,3,4] not [3,4] Why?

DICTIONARY

= so far, can store using separate lists for every info

names = ,{"Aryéx‘j, '"Tyrion', 'Robert', 'Elia']
grade =§.['A+" E'A" 'A_" 'A']

L]
-
.

course =, [5800; 5010, 5020, 7600]

= a separate list for each item
= each list must have the same length

= info stored across lists at same index, each index refers to info for a different person

HOW TO UPDATE/RETRIEVE STUDENT
NFO

student = input()

i = names.index(student)
grade = grades[i]

course = courses[i]
print(course, grade)

» messy if have a lot of different info to keep track of
» must always index using integers
» must remember to change multiple lists

A BETTER AND CLEANER WAY —
A DICTIONARY

" nice to index item of interest directly (not always int)

= nice to use one data structure, no separate lists

A list A dictionary
0 Elem 1 Key 1 Val 1
1 Elem 2 Key 2 Val 2
2 Elem 3 Key 3 Val 3
3 Elem 4 Key 4 Val 4
& e\e‘?“e{\‘ @iﬁ:‘d e,\c:-::cf”*‘?‘ﬁL

A PYTHON DICTIONARY

= store pairs of data

'"Arya' 'A+!
* key
. value '"Tyrion' "A'
'Robert' 'A-"
'Elia' 'A'
X0 oL
S| 07 e
é&%ﬁﬁﬁ “®@~ e
§¢ 2%

my dict = {}

grades = {'Arya':'A+', 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}
! } ! } ! } | }

keyl key2 key3 key4

DICTIONARY LOOKUP

= similar to indexing into a list

'Arya' 'A+'
= looks up the key ' Tyrion' T
= returns the value associated with the key 'Robert' 'A-T
= if key isn’t found, get an error 'Elia’ A

grades = {'Arya':'A+’, 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}
grades['Arvya'] — evaluatesto 'A+'

grades['Sylvan'] — givesaKeyError

DICTIONARY OPERATIONS

= add an entry Arya T
grades['Theon'] = 'B' '"Tyrion' A"
: TR 'Robert! 'A-"

= test if key in dictionary Oler
'Elia' 'A'

'Robert' in grades - returns True
'Daniel' in grades —->returnsFalse

= delete entry

del (grades['Arya'])

DICTIONARY OPERATIONS

grades = {'Arya':'A+', 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}

= get an iterable that acts like a tuple of all keys

grades.keys () - returns ['Arya', 'Tyrion', 'Robert', 'Elia’]

= get an iterable that acts like a tuple of all values

grades.values() - returns ['A+', 'A', 'A-', 'A']

DICTIONARY KEYS and VALUES

= values
* any type (immutable and mutable)

* can be duplicates
* dictionary values can be lists, even other dictionaries!

= keys
" must be unique
* immutable type (int, float, string, tuple, bool)

= actually need an object that is hashable, but think of as immutable as all immutable types are hashable

= careful with f1oat type as a key

= no order to keys or values! (As of python 3.6+ insertion order is guaranteed by language)

d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]}

list VS dict

= ordered sequence of = matches “keys” to
elements “values”

=look up elements by an " lookup one item by
integer index another item

"indices have an order " no order is guaranteed

(as of python 3.6+
insertion order is
guaranteed)

"index is an integer

= key can be any
immutable type

READING FILES

What you need in order to read information from a file

1. open the file and associate the file with a variable.

2. acommand to read the information.

3. acommand to close the file.

READING FILES

: : o
= use open statement to open a file for reading: S
\\6 (\O
d@@é§ f |= open (|'mydata.txt'|) %%&¢5
7 5
s\oofbg\\eo = you can read the entire content as a string \&“\
4
xO

content = f.read|()
= or, read just one line of the file at a time
line = f.readline ()
= or, read all the lines, as a list of lines
lines = f.readlines/()
= don’t forget to close the file after reading is finished

f.close ()

ITERATING THROUGH LINES

= you can iterate through the lines of a file usinga for loop

f = open('mydata.txt")

for line in f:
<statement>

f.close()

USING waith PATTERN

= we always forget to close the files, after we are finished using them

= 3 good pattern is to use with statements in python so the close operation will be done
automatically.

with open('mydata.txt') as f:
for line in f:
<statements>

WRITING INTO FILES

What you need in order to read information from a file

1. open the file and associate the file with a variable.

2. decide whether you want to delete all the preexisting content and write fresh
or you want to append at the end of the file

3. acommand to write into the file.

4. acommand to close the file.

WRITING AS A NEW FILE

. . : D
" use open statement with ‘w’ option to open the file for writing as new file \Q/&\on«{\
S A Q
f = open('data.txt', |'w'|) >R éexbbe\\
& AQ}K Q,bb
= write content into file using write method o &q}* &
ANIEO)
.\}
f.write ('blah blah blah'|) ¢
= close the file so the_content that you have written gets saved
0%
f.close () S

APPENDING TO A FILE

= the same as before, just open the file with *a’ option.

f = open('data.txt', 'a')

USING waith PATTERN

= 3 good pattern is to use with statements in python so the close operation will be done
automatically.

= Assume new lines is a list of strings, which we want to append each as a new line in
data.txt

with open('data.txt’', 'w') as f:
for 1 in new_lines:
f.write(l)
f.write('\n")

	DS5010�Intro to programming for Data Science
	TODAY
	REVIEW
	CONTROL FLOW:�while LOOPS
	while LOOP EXAMPLE
	�CONTROL FLOW: �while and for LOOPS
	�CONTROL FLOW: for LOOPS
	�range(start,stop,step)
	�break STATEMENT
	break STATEMENT
	�for VS while LOOPS
	�TUPLES
	TUPLES
	�MANIPULATING TUPLES� aTuple :
	�LISTS
	�INDICES AND ORDERING
	�CHANGING ELEMENTS
	ITERATING OVER A LIST
	�OPERATIONS ON LISTS -ADD
	�OPERATIONS ON LISTS -ADD
	�OPERATIONS ON LISTS -REMOVE
	�CONVERT LISTS TO STRINGS AND BACK
	OTHER LIST OPERATIONS
	�LISTS IN MEMORY
	�ALIASES
	�CLONING A LIST
	LISTS OF LISTS OF LISTS OF….
	�MUTATION AND ITERATION
	DICTIONARY
	HOW TO UPDATE/RETRIEVE STUDENT INFO
	A BETTER AND CLEANER WAY – �A DICTIONARY
	A PYTHON DICTIONARY
	DICTIONARY LOOKUP
	DICTIONARY OPERATIONS
	DICTIONARY OPERATIONS
	DICTIONARY KEYS and VALUES
	list vs dict
	READING FILES
	READING FILES
	ITERATING THROUGH LINES
	USING with PATTERN
	WRITING INTO FILES
	WRITING AS A NEW FILE
	APPENDING TO A FILE
	USING with PATTERN

