
DS5010
Intro to programming for Data Science
LECTURE 1

TODAY
 syllabus overview

 house and alias name assignments

 basic python objects

 basic operations

 variables and types

 rules of sum and product

 branching and conditionals

Syllabus
 you can access the full syllabus here:

https://rahiminasab.github.io/DS5010F19/

https://rahiminasab.github.io/DS5010F19/

House and Alias name Assignments
 students in this class will be divided into 5 Houses:
 Stark
 Baratheon
 Lannister
 Targaryen
 Martell

 each student will also get an alias name which are chosen from GOT character names.

 students will participate in HackerRank contests with a username derived from their alias
names.

 a script written in Python will do the assignments and emails the students their assigned,
House, alias name, and username.

Python vs English as a language
 primitive constructs

◦ English: words.
◦ programming language: numbers, strings, simple operators.

Word Cloud copyright Michael Twardos, All Right Reserved.

https://www.blogger.com/profile/13059549809775325178

Python vs English as a language
 syntax

• English: ”cat dog boy” → not syntactically valid
”cat hugs boy” → syntactically valid

• programming language: +"hi"5 → not syntactically valid
3.2*5 → syntactically valid

Python vs English as a language
 static semantics is which syntactically valid strings have meaning

• English: "I are hungry" → syntactically valid but with static semantic error

• programming language: 3.2*5 → syntactically valid
3+"hi" → static semantic error

Python vs English as a language
 semantics is the meaning associated with a syntactically correct string of symbols with no
static semantic errors
• English: can have many meanings "Flying planes can be dangerous“
• programming languages: have only one meaning but may not be what programmer intended

WHERE THINGS GO WRONG
 syntactic errors

• common and easily caught

 static semantic errors
• some languages check for these before running program
• can cause unpredictable behavior

 no semantic errors but different meaning than what programmer intended
• program crashes, stops running
• program runs forever
• program gives an answer but different than expected

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

• definitions evaluated
• commands executed by Python interpreter in a shell

 commands(statements) instruct interpreter to do something

 can be typed directly in a shell or stored in a file that is read into the shell and evaluated

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things programs can do to them
 A human can walk, and speak English
 A monkey can walk, but cannot speak English

 objects are
 scalar (cannot be subdivided)
 non-scalar (have internal structure that can be accessed)

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

PRINTING TO CONSOLE
 to show output from code to a user, use print command

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression

<object> <operator> <object>

OPERATORS ON ints and floats
 i+j → the sum

 i-j → the difference

 i*j → the product

 i/j → division

 i//j → floor division

 i%j → the remainder when i is divided by j

 i**j → i to the power of j

if both are ints, result is int
if either or both are floats, result is float

result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these operations first

 operator precedence without parentheses
 **
 *
 /
 + and – executed left to right, as appear in expression

BINDING VARIABLES AND VALUES
 equal sign is an assignment of a value to a variable name

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by invoking the name, by typing pi

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

CHANGING BINDINGS
 can re-bind variable names using new assignment statements

 previous value may still stored in memory but lost the handle for it

 value for area does not change until you tell the computer to do the calculation again

A SIMPLE COUNTING PROBLEM
 You know 4 different roads which you can take to go from NEU to Copley square

 You know 3 different roads which you can take to go from Copley to Downtown.

 In how many different ways can you go from NEU to Downtown given that you want to stop at
Copley in between?

 You know also 5 different roads which you can take to go from NEU to Downtown directly
without passing Copley.

 In how many different ways can you go from NEU to Downtown now?

DM: RULES OF SUM and PRODUCT
Rule of sum:

 if we have A ways of doing something and B ways of doing another thing and we can not do
both at the same time, then there are A + B ways to choose one of the actions.

Rule of product:

 if there are a ways of doing something and b ways of doing another thing, then there
are a * b ways of performing both actions.

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes

hi = "hello there"

 concatenate strings

name = "Arya"

greet = hi + name

greeting = hi + " " + name

 do some operations on a string as defined in Python docs

silly = hi + " " + name * 3

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

INPUT/OUTPUT: input("")
 prints whatever is in the quotes

 user types in something and hits enter

 binds that value to a variable

text = input("Type anything... ")

print(5*text)

 input gives you a string so must cast if working with numbers

num= int(input("Type a number... "))

print(5*num)

STRINGS
 You can access the i’th character in a string using brackets.

s = “abcde”

s[0] → ‘a’
s[1] → ‘b’
…
s[4] → ‘e’

 use len function to get the length of a string, which is the number of characters it has:

len(s)→ 5

 Negative indexing, makes it easy to access the last elements!

s[-1]→ ‘e’

STRINGS
 you can get a slice of a string, by telling that from which index it starts and before which one it
ends.

s = “abcdef”

s[1:4]→ ‘bcd’

s[:3]→ ‘abc’ if we do not write the starting index, it assumes 0

s[3:]→ ‘def’ if we do not write the ending index, it assumes it is len(s)

COMPARISON OPERATORS ON int, float, string
 i and j are variable names

 comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j → equality test, True if i is the same as j

i != j → inequality test, True if i not the same as j

LOGIC OPERATORS ON bools
 a and b are variable names (with Boolean values)

not a → True if a is False. False if a is True

a and b → True if both are True

a or b → True if either or both are True

COMPARISON EXAMPLE
pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

CONTROL FLOW - BRANCHING

 <condition> has a value True or False
 evaluate expressions in that block if <condition> is True

INDENTATION
 matters in Python

 how you denote blocks of code

x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:
print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
else:

print("y is smaller")

print("thanks!")

	DS5010�Intro to programming for Data Science
	TODAY
	Syllabus
	House and Alias name Assignments
	Python vs English as a language
	Python vs English as a language
	Python vs English as a language
	Python vs English as a language
	�WHERE THINGS GO WRONG
	�PYTHON PROGRAMS
	�OBJECTS
	�SCALAR OBJECTS
	�TYPE CONVERSIONS (CAST)
	PRINTING TO CONSOLE
	�EXPRESSIONS
	�OPERATORS ON ints and floats
	�SIMPLE OPERATIONS
	�BINDING VARIABLES AND VALUES
	�ABSTRACTING EXPRESSIONS
	PROGRAMMING vs MATH
	CHANGING BINDINGS
	A SIMPLE COUNTING PROBLEM
	DM: RULES OF SUM and PRODUCT
	STRINGS
	�INPUT/OUTPUT: print
	�INPUT/OUTPUT: input("")
	STRINGS
	STRINGS
	�COMPARISON OPERATORS ON int, float, string
	�LOGIC OPERATORS ON bools
	COMPARISON EXAMPLE
	�CONTROL FLOW - BRANCHING
	�INDENTATION

