
DS5010
Intro to programming for Data Science
LECTURE 2



TODAY
 review session 1

 iterations with for/while loops

 lists, tuples, dictionaries

mutable and immutable objects

 read/write files



REVIEW
 primitive objects and operators

 variables and types

 rules of sum and product

 branching and conditionals



CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the while code block

 check <condition> again

 repeat until <condition> is False 



while LOOP EXAMPLE
Guess and check game

 Sansa as the programmer generates a random integer between 0 – 20.

 Joffrey as the user will input his guess.

 if his guess matches Sansa’s number, a success message will be printed.

 otherwise, Joffrey has to keep guessing.

n = random.randint(0, 20)
g = int(input('Guess what number is in my mind?'))
while n != g:

g = int(input('Guess what number is in my mind?'))
print('That was right!!')



CONTROL FLOW: 
while and for LOOPS
 iterate through numbers in a sequence

# more complicated with while loop
n = 0
while n < 5:

print(n)
n = n+1

# shortcut with for loop
for n in range(5):

print(n)



CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression> 

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc. 



range(start,stop,step)
 default values are start = 0 and step = 1 and optional

 loop until value is stop -1

mysum = 0
for i in range(7, 10):

mysum += i
print(mysum)

mysum = 0
for i in range(5, 11, 2):

mysum += i
print(mysum)



break STATEMENT
 immediately exits whatever loop it is in
 skips remaining expressions in code block

 exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c> 



break STATEMENT 

 what happens in this program? 

mysum= 0
for i in range(5, 11, 2):

mysum += 1
print(mysum)

mysum += i
if mysum == 5:

break



for    VS           while LOOPS
for loops

 know number of iterations

 can end early via break

 uses a counter

 can rewrite a for loop 
using a while loop

while loops

 unbounded number of iterations

 can end early via break

 can use a counter but must initialize
before loop and increment it inside
loop

 may not be able to rewrite a
while loop using a for loop 



TUPLES
 an ordered sequence of elements, can mix element types.

 cannot change element values, immutable

 represented with parentheses

te= ()

t = (2,"stark",3)

t[0]                evaluates to 2

(2,"stark",3) + (5,6) evaluates to(2,"stark",3,5,6)

t[1:2]              slice tuple, evaluates to ("stark",)

t[1:3]              slice tuple, evaluates to ("stark",3)

len(t)              evaluates to 3

t[1] = 4            gives error,  can’t modify object



TUPLES
 conveniently used to swap variable values

 used to return more than one value from a function (will return to this when learning about 
functions)



MANIPULATING TUPLES
aTuple :         

 can iterate over tuples

nums = ()
words = ()
for t in aTuple:

nums = nums + (t[0],)
if t[1] not in words:

words = words + (t[1],)
min_n = min(nums)
max_n = max(nums)
unique_words_count = len(words)
print(min_n, max_n, unique_words_count)



LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
 usually homogeneous (i.e, all integers)

 can contain mixed types (not common)

 list elements can be changed so a list is mutable



INDICES AND ORDERING
a_list= []

L = [2, 'a', 4, [1,2]]

len(L)  evaluates to 4

L[0]    evaluates to 2

L[2]+1  evaluates to 5

L[3]    evaluates to [1,2], another list!

L[4]    gives an error 

i= 2

L[i-1]  evaluates to 'a' since L[1]='a' above 



CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value at that index

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L



ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern, iterate over list elements

 Notice list elements are indexed 0 to len(L)-1

 range(n) goes from 0 to n-1

total = 0
for i in range(len(L)):

total += L[i]
print(total)

total = 0
for e in L:

total += e
print(total)



OPERATIONS ON LISTS -ADD
 add elements to end of list with L.append(element)

 mutates the list!

L = [2,1,3]

L.append(5)  L is now [2,1,3,5]

 what is the dot? 
 lists are Python objects, everything in Python is an object
 objects have data
 objects have methods and functions 
 access this information by object_name.do_something()
 will learn more about these later 



OPERATIONS ON LISTS -ADD
 to combine lists together use concatenation, + operator, to give you a new list

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2      L3 is [2,1,3,4,5,6]
L1, L2 unchanged

L1.extend([0,6])  mutated L1to [2,1,3,0,6] 



OPERATIONS ON LISTS -REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the removed element

 remove a specific element with L.remove(element)
 looks for the element and removes it
 if element occurs multiple times, removes first occurrence
 if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0] 
del(L[1])   mutates L = [1,3,7,0]
L.pop()     returns 0 and mutates L = [1,3,7] 



CONVERT LISTS TO STRINGS AND BACK
 convert string to list with list(s), returns a list with every character from s an element in L

 can use s.split(), to split a string on a character parameter, splits on spaces if called without a 
parameter

 use ''.join(L) to turn a list of characters into a string, can give a character in quotes to add 
char between every element

s = "I<3 DS"  s is a string

list(s)       returns ['I','<','3',' ','D',’S’]

s.split('<‘)  returns ['I', '3 DS’]

L = ['a','b','c’] L is a list

''.join(L)        returns "abc"

'_'.join(L)       returns "a_b_c"



OTHER LIST OPERATIONS
 sort() and sorted()

 reverse() and reversed()

 and many more! 
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L)   returns sorted list, does not mutate L

L.sort()    mutates L=[0,3,6,9]

reversed(L) returns a reversed list, does not mutate L

L.reverse() mutates L=[9,6,3,0] 

https://docs.python.org/3/tutorial/datastructures.html


LISTS IN MEMORY
 lists are mutable

 behave differently than immutable types

 is an object in memory

 variable name points to object

 any variable pointing to that object is affected

 key phrase to keep in mind when working with lists is side effects 



ALIASES
 hot is an alias for warm–changing one changes the other!

 append() has a side effect 



CLONING A LIST
 create a new list and copy every element using chill = cool[:] 



LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still 
possible after mutation 



MUTATION AND ITERATION
 avoid mutating a list as you are iterating over 
it

L1 is [2,3,4] not [3,4] Why? 

 Python uses an internal counter to keep track of 
index it is in the loop

 mutating changes the list length but Python doesn’t update the counter
 loop never sees element 2 



DICTIONARY
 so far, can store using separate lists for every info 
names = ['Arya', 'Tyrion', 'Robert', 'Elia']

grade = ['A+', 'A', 'A-', 'A']

course = [5800, 5010, 5020, 7600]

 a separate list for each item

 each list must have the same length

 info stored across lists at same index, each index refers to info for a different person 



HOW TO UPDATE/RETRIEVE STUDENT 
INFO
student = input()
i = names.index(student)
grade = grades[i] 
course = courses[i] 
print(course, grade)

 messy if have a lot of different info to keep track of
 must always index using integers
 must remember to change multiple lists 



A BETTER AND CLEANER WAY –
A DICTIONARY
 nice to index item of interest directly (not always int)

 nice to use one data structure, no separate lists 



A PYTHON DICTIONARY
 store pairs of data

• key 
• value 

grades = {'Arya':'A+', 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}

'Arya' 'A+'

'Tyrion' 'A'

'Robert' 'A-'

'Elia' 'A'

key1 val1 key2 val2 key3 val3  key4 val4



DICTIONARY LOOKUP
 similar to indexing into a list

 looks up the key

 returns the value associated with the key

 if key isn’t found, get an error

grades = {'Arya':'A+’, 'Tyrion':'A', 'Robert':'A-', 'Elia':'A’}

grades['Arya'] → evaluates to 'A+' 

grades['Sylvan'] → gives a KeyError

'Arya' 'A+'

'Tyrion' 'A'

'Robert' 'A-'

'Elia' 'A'



DICTIONARY OPERATIONS
 add an entry 
grades['Theon'] = 'B'

 test if key in dictionary 
'Robert' in grades → returns True 
'Daniel' in grades → returns False

 delete entry 
del(grades['Arya'])

'Arya' 'A+'

'Tyrion' 'A'

'Robert' 'A-'

'Elia' 'A'



DICTIONARY OPERATIONS
grades = {'Arya':'A+', 'Tyrion':'A', 'Robert':'A-', 'Elia':'A'}

 get an iterable that acts like a tuple of all keys 

grades.keys() → returns ['Arya', 'Tyrion', 'Robert', 'Elia’]

 get an iterable that acts like a tuple of all values 

grades.values() →  returns ['A+', 'A', 'A-', 'A']



DICTIONARY KEYS and VALUES
 values 

• any type (immutable and mutable)
• can be duplicates
• dictionary values can be lists, even other dictionaries! 

 keys
 must be unique
 immutable type (int, float, string, tuple, bool)
 actually need an object that is hashable, but think of as immutable as all immutable types are hashable

 careful with float type as a key 

 no order to keys or values! (As of python 3.6+ insertion order is guaranteed by language)

d = {4:{1:0}, (1,3):"twelve", 'const':[3.14,2.7,8.44]} 



list vs        dict
 ordered sequence of 
elements

look up elements by an 
integer index

indices have an order

index is an integer

matches “keys” to 
“values”

 lookup one item by 
another item

 no order is guaranteed 
(as of python 3.6+ 
insertion order is 
guaranteed)

 key can be any 
immutable type



READING FILES
What you need in order to read information from a file

1. open the file and associate the file with a variable.

2. a command to read the information.

3. a command to close the file.



READING FILES
 use open statement to open a file for reading:

f = open('mydata.txt')

 you can read the entire content as a string

content = f.read()

 or, read just one line of the file at a time

line = f.readline()

 or, read all the lines, as a list of lines

lines = f.readlines()

 don’t forget to close the file after reading is finished

f.close()



ITERATING THROUGH LINES
 you can iterate through the lines of a file using a for loop

f = open('mydata.txt')

for line in f:
<statement>   

f.close()



USING with PATTERN
 we always forget to close the files, after we are finished using them

 a good pattern is to use with statements in python so the close operation will be done 
automatically.

with open('mydata.txt') as f:
for line in f:

<statements>



WRITING INTO FILES
What you need in order to read information from a file

1. open the file and associate the file with a variable.

2. decide whether you want to delete all the preexisting content and write fresh
or you want to append at the end of the file

3. a command to write into the file.

4. a command to close the file.



WRITING AS A NEW FILE
 use open statement with ‘w’ option to open the file for writing as new file

f = open('data.txt', 'w')

 write content into file using write method

f.write('blah blah blah')

 close the file so the content that you have written gets saved

f.close()



APPENDING TO A FILE
 the same as before, just open the file with ‘a’ option.

f = open('data.txt', 'a')



USING with PATTERN
 a good pattern is to use with statements in python so the close operation will be done 
automatically.

 Assume new_lines is a list of strings, which we want to append each as a new line in 
data.txt

with open('data.txt', 'w') as f:
for l in new_lines:

f.write(l)
f.write('\n')


	DS5010�Intro to programming for Data Science
	TODAY
	REVIEW
	CONTROL FLOW:�while LOOPS
	while LOOP EXAMPLE
	�CONTROL FLOW: �while and for LOOPS
	�CONTROL FLOW: for LOOPS
	�range(start,stop,step)
	�break STATEMENT
	break STATEMENT 
	�for    VS           while LOOPS
	�TUPLES
	TUPLES
	�MANIPULATING TUPLES�                               aTuple :         
	�LISTS
	�INDICES AND ORDERING
	�CHANGING ELEMENTS
	ITERATING OVER A LIST
	�OPERATIONS ON LISTS -ADD
	�OPERATIONS ON LISTS -ADD
	�OPERATIONS ON LISTS -REMOVE
	�CONVERT LISTS TO STRINGS AND BACK
	OTHER LIST OPERATIONS
	�LISTS IN MEMORY
	�ALIASES
	�CLONING A LIST
	LISTS OF LISTS OF LISTS OF….
	�MUTATION AND ITERATION
	DICTIONARY
	HOW TO UPDATE/RETRIEVE STUDENT INFO
	A BETTER AND CLEANER WAY – �A DICTIONARY
	A PYTHON DICTIONARY
	DICTIONARY LOOKUP
	DICTIONARY OPERATIONS
	DICTIONARY OPERATIONS
	DICTIONARY KEYS and VALUES
	list      vs        dict 
	READING FILES
	READING FILES
	ITERATING THROUGH LINES
	USING with PATTERN
	WRITING INTO FILES
	WRITING AS A NEW FILE
	APPENDING TO A FILE
	USING with PATTERN

