
DS5010
Intro to programming for Data Science
LECTURE 3

TODAY
▪ review session 2

▪ learn how to count! (permutations, combinations)

▪ functions

▪ modules

REVIEW
▪ iterations with for/while loops

▪ tuples, lists, dictionaries

▪ mutable and immutable objects

▪ read/write files

HOW TO COUNT?
Problem:

5 houses are competing in DS5010 House Competitions. When
the competitions are over, houses will be ranked from 1 to 5
based on their performance. How many different rankings can
we have (assuming no two houses will get a same rank)?

PERMUTATIONS
▪ permutation is the act of arranging the members of a set into a sequence or order.

▪ So keep in mind, in a permutation always the order of elements matter.

▪ If you change the order of the selected elements you will have a different permutation.

FACTORIAL

𝑛! = 𝑛 × 𝑛 − 1 × 𝑛 − 2 ×⋯× 2 × 1

0! = 1

𝟔𝟏! > the number of atoms in the universe!!(𝟏𝟎𝟖𝟐)

PERMUTATIONS with NO REPETITIONS

, , ,…
…

a set of n objects

select r of them

place them in an
ordered sequence

repetition is not allowed.
all elements should be
different.

𝑛 × 𝑛 − 1 ×⋯× 𝑛 − 𝑟 + 1 = 𝑃𝑟
𝑛 =

𝑛!

𝑛 − 𝑟 !

the rule of product

HOW TO COUNT?
Problem:

We want to generate a secret code of length 5 from a set of

36 characters. How many different secret codes can we
generate?

PERMUTATIONS with REPETITIONS
ALLOWED

, , ,…
…

a set of n objects

select r of them

place them in an
ordered sequence

repetition is allowed.

𝑛 × 𝑛 × … × 𝑛 = 𝒏𝒓

the rule of product

HOW TO COUNT?
Problem:

There are 24 students in DS5010 class and I

want to choose 4 of them to form a new house
which is called Tyrell! How many different
shapes can the house of Tyrell have?

COMBINATIONS
▪ a combination is a selection of items from a collection, such that (unlike permutations) the

order of selection does not matter.

▪ If you change the order of the selected elements you will have the same combination!

COMBINATIONS with NO REPETITIONS

…

a set of n objects

select r of them

place them in a set
were order doesn’t
matter.

repetition is not allowed.
all elements should be
different.

…

𝐶𝑟
𝑛 =

𝑛!

𝑛 − 𝑘 ! × 𝑘!

HOW TO COUNT?
Problem:

Let us say there are five flavors of ice-
cream: banana, chocolate, lemon, strawberry
and vanilla.

We can have three scoops. How many variations
will there be?

COMBINATIONS with REPETITIONS
▪ this is out of the scope of this class, but if you are interested, the formula for it is:

𝑟 + 𝑛 − 1
𝑟

=
𝑟+𝑛−1 !

𝑛−1 ! × 𝑟!

SOME USEFUL RELATIONS

𝒏
𝒌

=
𝒏

𝒏 − 𝒌

𝒏
𝒌

=
𝒏 − 𝟏
𝒌

+
𝒏 − 𝟏
𝒌 − 𝟏

rule of sum

BINOMIAL EXPANSION
▪ what is the expanded version of 𝒙 + 𝒚 𝒏 ?

the answer is:

𝑘=0

𝑛
𝑛
𝑘
𝑥𝑘𝑦𝑛−𝑘

BINOMIAL COEFFICIENTS
what will be the coefficient of 𝒙𝒌𝒚𝒏−𝒌 in the following multiplication expression?

In order to have 𝑥𝑘 exactly 𝑘 of the above terms should have been multiplied together.

In how many ways can we select 𝑘 terms from 𝑛 terms?
𝑛
𝑘

so if we add all the 𝒙𝒌𝒚𝒏−𝒌 terms together we will have
𝑛
𝑘
𝑥𝑘𝑦𝑛−𝑘

it is equivalent to
𝑛

𝑛 − 𝑘
𝑥𝑘𝑦𝑛−𝑘 (if we considered 𝑦 instead of 𝑥)

𝑥 + 𝑦 𝑛 = 𝑥 + 𝑦 × 𝑥 + 𝑦 × 𝑥 + 𝑦 ×⋯× 𝑥 + 𝑦

𝑛 times

FUNCTIONS

HOW DO WE WRITE CODE?
so far…

▪ covered language mechanisms
▪ know how to write different files for each computation

▪ each file is some piece of code

▪ each code is a sequence of instructions

▪ problems with this approach
▪ easy for small-scale problems

▪ messy for larger problems

▪ hard to keep track of details

▪ how do you know the right info is supplied to the right part of code

GOOD PROGRAMMING
▪ more code not necessarily a good thing

▪ measure good programmers by the amount of functionality

▪ introduce functions

▪ mechanism to achieve decomposition and abstraction

EXAMPLE –PROJECTOR
▪ a projector is a black box

▪ don’t know how it works

▪ know the interface: input/output

▪ connect any electronic to it that can communicate with that input

▪ black box somehow converts image from input source to a wall, magnifying it

▪ ABSTRACTION IDEA: do not need to know how projector works to use it

EXAMPLE–PROJECTOR
▪ projecting large image for Olympics decomposed into separate tasks for separate projectors

▪ each projector takes input and produces separate output

▪ all projectors work together to produce larger image

▪ DECOMPOSITION IDEA: different devices work together to achieve an end goal

APPLY THESE CONCEPTS

TO PROGRAMMING!

CREATE STRUCTURE with
DECOMPOSITION
▪ in projector example, separate devices

▪ in programming, divide code into functions, modules, classes (covered later).
▪ are self-contained

▪ used to break up code

▪ intended to be reusable

▪ keep code organized

▪ keep code coherent

SUPRESS DETAILS with
ABSTRACTION
▪ in projector example, instructions for how to use it are sufficient, no need to know how to build
one

▪ in programming, think of a piece of code as a black box
▪ cannot see details

▪ do not need to see details

▪ do not want to see details

▪ hide tedious coding details

▪ achieve abstraction with function specifications or docstrings

FUNCTIONS
▪ write reusable pieces/chunks of code, called functions

▪ functions are not run in a program until they are “called” or “invoked” in a program

▪ function characteristics:
▪ has a name

▪ has parameters (0 or more)

▪ has a docstring (optional but recommended)

▪ has a body

▪ returns something

HOW TO WRITE and CALL/INVOKE A
FUNCTION

def is_even(i):

"""

param i: a positive int

returns: True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

is_even(3)

IN THE FUNCTION BODY
def is_even(i):

"""

param i: a positive int

returns: True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

VARIABLE SCOPE
▪ formal parameter gets bound to the value of actual parameter when function is called

▪ new scope/frame/environment created when enter a function

▪ scope is mapping of names to objects

def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

VARIABLE SCOPE
def f(x):

x = x + 1

print('in f(x): x =', x)

return x

x = 3

z = f(x)

ONE WARNING IF NO
return STATEMENT

def is_even(i):

"""

param i: a positive int

Does not return anything

"""

i%2 == 0

▪ Python returns the value None, if no return given

▪ represents the absence of a value

return vs. print

➢ return only has meaning
inside a function
➢ only one return executed
inside a function
➢ code inside function but
after return statement not
executed
➢ has a value associated
with it, given to function
caller

➢ print can be used outside
functions
➢ can execute many print
statements inside a function
➢ code inside function can be
executed after a print
statement
➢ has a value associated with
it, outputted to the console

FUNCTIONS AS ARGUMENTS
▪ arguments can take on any type, even functions

def func_a():

print 'inside func_a’

def func_b(y):

print 'inside func_b’

return y

def func_c(z):

print 'inside func_c’

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

FUNCTIONS AS ARGUMENTS
def func_a():

print 'inside func_a’

def func_b(y):

print 'inside func_b’

return y

def func_c(z):

print 'inside func_c’

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

FUNCTIONS AS ARGUMENTS
def func_a():

print 'inside func_a’

def func_b(y):

print 'inside func_b’

return y

def func_c(z):

print 'inside func_c’

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

FUNCTIONS AS ARGUMENTS
def func_a():

print 'inside func_a’

def func_b(y):

print 'inside func_b’

return y

def func_c(z):

print 'inside func_c’

return z()

print func_a()

print 5 + func_b(2)

print func_c(func_a)

SCOPE EXAMPLE
▪ inside a function, can access a variable defined outside

▪ inside a function, cannot modify a variable defined outside --can using global variables, but it is
discouraged.

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

def g(y):

print(x)

print(x+1)

x = 5

g(x)

print(x)

def h(y):

x += 1

x = 5

h(x)

print(x)

SCOPE EXAMPLE
▪ inside a function, can access a variable defined outside

▪ inside a function, cannot modify a variable defined outside --can using global variables, but it is
discouraged.

def f(y):

x = 1

x += 1

print(x)

x = 5

f(x)

print(x)

def g(y):

print(x)

print(x+1)

x = 5

g(x)

print(x)

def h(y):

x += 1

x = 5

h(x)

print(x)

SCOPE DETAILS

def g(x):

def h():

x = 'abc’

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS

def g(x):

def h():

x = 'abc’

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS

def g(x):

def h():

x = 'abc’

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS

def g(x):

def h():

x = 'abc’

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS

def g(x):

def h():

x = 'abc’

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

SCOPE DETAILS

def g(x):

def h():

x = 'abc’

x = x + 1

print('g: x =', x)

h()

return x

x = 3

z = g(x)

DECOMPOSITION & ABSTRACTION
▪ powerful together

▪ code can be used many times but only has to be debugged once!

MODULES
▪ each python file which ends with .py is called a module.

▪ a module is a collection of Python definitions and statements.

▪ when your program gets longer, decompose it into several modules for easier maintenance.

▪ the definitions and statements in each module should serve a same purpose.

MODULES
example:

▪ assume we are writing a registration system for NEU

▪ we want to divide our program into two modules, one for students, and another one for
faculties.

▪ we use the definitions of one module in another one by importing it.

▪ visit –link– to access the example code.

IMPORTING MODULES
▪ each module has its own private symbol table used as the global symbol table by all functions
in the module

▪ each module is imported once per interpreter session

import some_module

▪ can import names from a module into the importing module’s symbol table:

from some_module import m1, m2 (or *)

MODULE ALIAS NAME
▪ you can give shorter names to modules with long names, to be easier to use.

import my_long_named_module as my_mod

BUILTIN STANDARD LIBRATIES
▪ math

▪ random

▪ itertools

▪ string

▪ datetime

▪ statistics

▪ os

▪ sys

▪ and many more…

