DS5010

Intro to programming for Data Science

LECTURE 3

TODAY

" review session 2

= [earn how to count! (permutations, combinations)

= functions

= modules

REVIEW

= jterations with for/while loops

= tuples, lists, dictionaries

= mutable and immutable objects

= read/write files

HOW TO COUNT?

Problem:

5 houses are competing in DS5010 House Competitions. When
the competitions are over, houses will be ranked from 1to 5
based on their performance. How many different rankings can
we have (assuming no two houses will get a same rank)?

PERMUTATIONS

= permutation is the act of arranging the members of a set into a sequence or order.

= So keep in mind, in a permutation always the Order of elements matter.

= |f you change the order of the selected elements you will have a different permutation.

FACTORIAL

n' = nxn-1)xnh-2)x---x2x1

61! > the number of atoms in the universe!!(1082)

PERMUTATIONS with NO REPETITIONS

the rule of product

|

‘ I nXnh-1)X-+xXxn—-r+1)
‘ select I of them
[] &\0(\%

‘ place them in an

‘ ‘ ordered sequence \\ /

repetition is not allowed.
all elements should be

a set of N objects

different.

HOW TO COUNT?

Problem:

We want to generate a secret code of length 5 from a set of

36 characters. How many different secret codes can we
generate?

PERMUTATIONS with REPETITIONS
ALLOWED

the rule of product
a set of N objects

S
‘ nxXxnxX. X n =@(0“@‘\0(\
(2 O

e .\
‘ select I of them ["K\Qo%"\v
‘ place them in an
‘ ‘ ordered sequence

repetition is allowed.

HOW TO COUNT?

Problem:

There are 24 students in DS5010 class and |

want to choose 4 of them to form a new house
which is called Tyrell! How many different
shapes can the house of Tyrell have?

COMBINATIONS

= a combination is a selection of items from a collection, such that (unlike permutations) the

O rd e r of selection does not matter.

= If you change the order of the selected elements you will have the same combination!

COMBINATIONS with NO REPETITIONS

a set of N objects

(4
‘ ~— . & <&
‘ \<<\ (\&6\ S
‘ select I’ of them $?>e \)&’6‘
— 9
’ be@f
‘ place them in a set

were order doesn’t

‘ ‘ matter.

repetition is not allowed.
all elements should be
different.

HOW TO COUNT?

Problem:

Let us say there are five flavors of ice-
cream: banana, chocolate, lemon, strawberry
and vanilla.

We can have three scoops. How many variations
will there be?

COMBINATIONS with REPETITIONS

= this is out of the scope of this class, but if you are interested, the formula for it is:

(r +n— 1) _ (r+n-1)!
T

T (n=D)!x7!

SOME USEFUL RELATIONS
(1) = (a2 1)

|

(1)

")

(k- 1)

BINOMIAL EXPANSION

= what is the expanded version of (x + y)" ?

the answer is: n
k.,n—k
x<y
k=0 .
&
6066(@.
\\e‘e e‘\‘o

BINOMIAL COEFFICIENTS

what will be the coefficient of xky"_k in the following multiplication expression?

n times

(x+y)" = Ex+y)><(x+y)><(x+y)><---><(x+y:)

k

In order to have x* exactly k of the above terms should have been multiplied together.

n
In how many ways can we select k terms from n terms? (k)

so if we add all the x¥y™ ¥ terms together we will have (Z) xRyn=k

kyn=K (if we considered y instead of x)

- . n
It IS equwalent to (Tl . k) X

INPUT X

v
FUNCTION f:
I;;I FUNCTIONS
v

OUTPUT f(x)

HOW DO WE WRITE CODE?

so far...

= covered language mechanisms
= know how to write different files for each computation

= each file is some piece of code
= each code is a sequence of instructions

= problems with this approach
= easy for small-scale problems

= messy for larger problems
= hard to keep track of details
= how do you know the right info is supplied to the right part of code

GOOD PROGRAMMING

= more code not necessarily a good thing

= measure good programmers by the amount of functionality

= introduce functions

= mechanism to achieve decomposition and abstraction

EXAMPLE —PROJECTOR

= 3 projector is a black box

= don’t know how it works

= know the interface: input/output

= connect any electronic to it that can communicate with that input

= black box somehow converts image from input source to a wall, magnifying it

= ABSTRACTION IDEA: do not need to know how projector works to use it

EXAMPLE-PROJECTOR

= projecting large image for Olympics decomposed into separate tasks for separate projectors

= each projector takes input and produces separate output

= all projectors work together to produce larger image

= DECOMPOSITION IDEA: different devices work together to achieve an end goal

APPLY THESE CONCEPTS

TO PROGRAMMING!

CREATE STRUCTURE with
DECOMPOSITION

= in projector example, separate devices

= in programming, divide code into functions, modules, classes (covered later).
= are self-contained

= used to break up code
" intended to be reusable
= keep code organized

= keep code coherent

SUPRESS DETAILS with
ABSTRACTION

= in projector example, instructions for how to use it are sufficient, no need to know how to build
one

" in programming, think of a piece of code as a black box
= cannot see details

= do not need to see details
= do not want to see details
= hide tedious coding details

= achieve abstraction with function specifications or docstrings

FUNCTIONS

= write reusable pieces/chunks of code, called functions

= functions are not run in a program until they are “called” or “invoked” in a program

= function characteristics:
= has a name

= has parameters (0 or more)

= has a docstring (optional but recommended)
= has a body

= returns something

HOW TO WRITE and CALL/INVOKE A
FUNCTION

me ers Of
0‘6 e pafame’t
Y defl|l|is even|(|1]) r%“mems on
h i pecifica®®
ng

param 1: a positive int
returns: True 1f 1 1s even, otherwise False
print ("inside 1s even")

bodY a cal the
return 1%2 == 0 " COde,‘loume and

0 . a
is even (3) \aterc'l'\o us\n " eters
_ v g fof para™
yalue

IN THE FUNCTION BODY

def is even(1):

wiwew

param 1: a positive 1int

returns: True 1f 1 1s even, otherwise False

o 60((\6(\65
NG
, . . O &
print ("inside 1s even") (¢°
return|np%s2 == 0
(6 xO (O
2 ‘I\Q(e e 20
e a\\)a’ﬁ

VARIABLE SCOPE

= formal parameter gets bound to the value of actual parameter when function is called

= new scope/frame/environment created when enter a function

= scope is mapping of names to objects

2\
o ((\e"e()
def f(|x|): ¢o® O
o
x =x+1 w —(\'\’i\o(\
— 6@‘\\
print ('in £ (x) x ="', X) N ‘0\61
0 * \o
return x %(aw"\‘a(\ab eca\\‘\\":\(\ o\‘a(
S of© AO% 0O
X = 3 \ \ © \W1€° (\C‘\O N\
2 el O (e Qi
aC 2 e ° \‘e e’&\)‘“
z = £(|x]) g O s
° 355\%

VARIABLE SCOPE

def £f(x):
Global scope
X = x + 1
f Some
print ('in f(x): x =', X) code

return x

VARIABLE SCOPE

def £f(x):
Global scope
X = x + 1
f Some
print('in f(x): x ="', x) code

return x

VARIABLE SCOPE

def £(x) :
Global scope
x =x + 1
f Some
print('in f(x): x ="', X) code

return x

VARIABLE SCOPE

def £(x):
Global scope
X = x + 1
f Some
print ('in f(x): x ="', Xx) code

return x

ONE WARNING IF NO
return STATEMEN

def is even(1):

param 1: a positive int

Does not return anything

\)"'a 0(6
w00 W
o W &“Wﬂ

= Python returns the value None, if no return given

= represents the absence of a value

return VS. print

» return only has meaning » print can be used outside
inside a function functions

» only one return executed » can execute many print
inside a function statements inside a function
» code inside function but » code inside function can be
after return statement not executed after a print
executed statement

» has a value associated > has a value associated with
with it, given to function it, outputted to the console
caller

FUNCTIONS AS ARGUMENTS

= arguments can take on any type, even functions

def func a():
print 'inside func a’

def func b(y):
print 'inside func b’
return y

200
def func c(z): «\e’&e‘s e N“c’“

print 'inside func c’ Qﬁa eX .. 300"

— e W\ o\ \ a2

return z () c a,&’d\‘ G o \\\%

print |func a () dN‘ C\Mﬂﬁg epﬁa
\\dg 50
print |5 + func b (2) A\ oC ¥
\JOT

print |func c (func a) c

FUNCTIONS AS ARGUMENTS

def func a():
print 'inside func a’

Global scope func_a scope

func a ~ SOome

def func b(y): code
print 'inside func b’ Some
return y func b = oge

Some

def func c(z): func ¢ code

print 'inside func c’
return z ()

None returns None

print |[func a()

print 5 + func b(2)

print func c(func_ a)

FUNCTIONS AS ARGUMENTS

def func al(): Global scope func_b scope
print 'inside func a’

Some

func_a
code

def func b(y):

print 'inside func b’ Some
- func b

return y code

Some

def func c(z): func_ ¢ = code

print 'inside func c’

return z () None

print func a /()
— returns 2

print 5 + [func b (2)

print func c(func_ a)

FUNCTIONS AS ARGUMENTS

def func a(): Global scope func_c scope
print 'inside func a’

func_ a Some

q func_a
def func b(y): code
print 'inside func b’ Some
return y func_ b oge

func a scope
Some = P

def func_c(z): func ¢ code

print 'inside func c’
return |z ()

None

print func a () returns None

print 5 + func b(2)
returns None

print |func c (func_ a)

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

= inside a function, cannot modify a variable defined outside --can using global variables, but it is
discouraged.

def f(y): def g(y): def h(y): ’S&e
O x = 1 int = NS
27 X Q ¢, prin X X ’b‘ Q
Q N Q
bei\\ Ox\x += 1 +‘\‘O\f;)\6e print (xfl) c’z}‘ &
\(;@ OQQ’ print (x) o x = § o‘.°\0 ,b(_)‘o\oo
TS x =5 < h (x) e
X = 5 g (x) \@6 ?}\eb print (x) &,o“eb‘o
£ (x) print (x) % x° &
print (x) AN \550 (é\e

SCOPE EXAMPLE

= inside a function, can access a variable defined outside

= inside a function, cannot modify a variable defined outside --can using global variables, but it is
discouraged.

def f(y): def g(y): def h(y):
x =1 print (x) X +=
X += 1 print (x+1)
X =5

print (x)

SCOPE DETAILS

Global scope

def g (x):

def h{(): B o Some
QO
x = 'abc’ & code
Xx = x + 1 O@Q’
print('g: x ="', Xx)
h ()
return x _

N X
1l

Q w
X

SCOPE DETAILS

Global scope

def h(): 8 Some
x = 'abc’ code

Xx = x + 1

print('g: x = X)

h ()

N X

g scope

SCOPE DETAILS

Global scope

def g (x):

def h(): 8 Some
x = 'abc’ code

Xx = x + 1

print('g: x ="', x)

h ()

return X

N X

g (x)

g scope

SCOPE DETAILS

Global scope g scope
def g (x):
def h(): Some
x = 'abc’ code
Xx = x + 1
print('g: x =', x)
h ()

return x

z = g(x)

SCOPE DETAILS

Global scope g scope
def g (x):
def h(): Some
x = 'abc’ code
Xx = x + 1
print('g: x ="', Xx)
h ()

return X

z = g(Xx)

returns 4

SCOPE DETAILS

Global scope

def g (x):

def h{(): 8 Some
x = ‘'abc’ code

Xx = x + 1

print('g: x ="', Xx)

h ()

return X

N X
1l

Q w
X

DECOMPOSITION & ABSTRACTION

= powerful together

= code can be used many times but only has to be debugged once!

MODULES

= each python file which ends with . py is called a module.

= a module is a collection of Python definitions and statements.

= when your program gets longer, decompose it into several modules for easier maintenance.

= the definitions and statements in each module should serve a same purpose.

MODULES

example:

= assume we are writing a registration system for NEU

= we want to divide our program into two modules, one for students, and another one for
faculties.

= we use the definitions of one module in another one by importing it.

= visit —link— to access the example code.

IMPORTING MODULES

= each module has its own private symbol table used as the global symbol table by all functions
in the module

= each module is imported once per interpreter session
import some module

= can import names from a module into the importing module’s symbol table:

from some module import ml, m2 (or|*) 20

MODULE ALIAS NAME

= you can give shorter names to modules with long names, to be easier to use.

import my long named module |as|jmy mod 2

0’2’6\

S
"0
>

BUILTIN STANDARD LIBRATIES

= math

" random
" jtertools
= string

= datetime
= statistics
" 0S

NS

= and many more...

