
DS5010
Intro to programming for Data Science
LECTURE 6

TODAY
§ review session 5

§ PART I
§ more on classes and objects
§ inheritance

§ PART II: basic data structures
§ Stack
§ Queue
§ LinkedList
§ HashTable

REVIEW
§ what are objects

§ classes

§ object oriented programming

PART I

IMPLEMENTING USING
THE CLASS vs THE CLASS
§ write code from two different perspectives

implementing a new object type with
a class
o define the class
o define data attributes

(WHAT IS the object)
o define methods

(HOW TO use the object)

using the new object type in
code
o create instances of the

object type
o do operations with them

CLASS DEFINITION INSTANCE
OF AN OBJECT TYPE vs OF A CLASS
§ class name is the type
class Coordinate:

§ class is defined generically
§ use self to refer to some

instance while defining the
class
(self.x–self.y)**2

§ self is a parameter to
methods in class definition

§ class defines data and
methods common across all
instances

§ instance is one specific object
coord= Coordinate(1,2)

§ data attribute values vary between instances
c1 = Coordinate(1,2)
c2 = Coordinate(3,4)
§ c1 and c2 have different data

attribute values c1.x and c2.x
because they are different objects

§ instance has the structure of the class

GETTER AND SETTER METHODS

getters and setters should be used outside of class to access data attributes

class Animal:
def __init__(self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

gette
r

setter

AN INSTANCE and DOT NOTATION (RECAP)
§ instantiation creates an instance of an object

a = Animal(3)

§ dot notation used to access attributes (data and methods)
though it is better to use getters and setters
to access data attributes

a.age

a.get_age()

-access method

-best to use getters

and setters

-access d
ata attrib

ute

-allowed, but not re
commended

INFORMATION HIDING
§ author of class definition may change data attribute variable names

§ if you are accessing data attributes outside the class and class definition changes, may get
errors

§ outside of class, use getters and setters instead use a.get_age()NOT a.age
§ good style
§ easy to maintain code
§ prevents bugs

class Animal:
def __init__(self, age):

self.years = age
def get_age(self):

return self.years
replaced ag

e data

attri
bute by ye

ar
s

PYTHON NOT GREAT AT INFORMATION
HIDING
§ allows you to access data from outside class definition

print(a.age)

§ allows you to write to data from outside class definition

a.age = 'infinite'

§ allows you to create data attributes for an instance from outside class definition

a.size = "tiny"

§ it’s not good style to do any of these!

DEFAULT ARGUMENTS
§ default arguments for formal parameters are used if no actual argument is given

def set_name(self, newname=""):
self.name = newname

§ default argument used here
a = Animal(3)
a.set_name()
print(a.get_name())

§ argument passed in is used here
a = Animal(3)
a.set_name("fluffy")
print(a.get_name())

prints "
"

prints "
fluffy"

HIERARCHIES

Anim
al

HIERARCHIES

§ parent class(superclass)

§ child class(subclass)
§ inherits all data and behaviors of parent class
§ add more info
§ add more behavior
§ override behavior

INHERITANCE:
PARENT CLASS
class Animal(object):

def __init__(self, age):
self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

- everything is an object

- class obj
ect

implements

basic operations in Python,

like binding variables, etc

- you can avoid declaring

obj
ect

as parent class in

Python 3+

INHERITANCE:
SUBCLASS

§ add new functionality with speak()
§ instance of type Cat can be called with new methods
§ instance of type Animal throws error if called with Cat’s new method

§__init__ is not missing, uses the Animal version

class Cat(Animal):

def speak(self):
print("meow")

def __str__(self):
return "cat:"+str(self.name)+":"+str(self.age)

inherits
 all a

ttri
butes o

f A
ni
ma
l:

__
in
it
__
()

ag
e,
 n
am
e

ge
t_
ag
e(
),
 g
et
_n
am
e(
)

se
t_
ag
e(
),
 s
et
_n
am
e(
)

__
st
r_
_(
)

add new

functionality via

speak method

overrid
es __str_

_

WHICH METHOD TO USE?
§ subclass can have methods with same name as
superclass

§ for an instance of a class, look for a method name in
current class definition

§ if not found, look for method name up the hierarchy
(in parent, then grandparent, and so on)

§ use first method up the hierarchy that you found with
that method name

class Person(Animal):
def __init__(self, name, age):

Animal.__init__(self, age)
self.set_name(name)
self.friends = []

def get_friends(self):
return self.friends

def add_friend(self, fname):
if fname not in self.friends:

self.friends.append(fname)

def speak(self):
print("hello")

def age_diff(self, other):
diff = self.age-other.age
print(abs(diff), "year difference")

def __str__(self):
return "person:"+str(self.name)+":"+str(self.age)

parent class is Animal
call Animal’s constructorcall Animal’s method add new data attribute

new methods

override Animal’s

__str__ method

import random

class Student(Person):
def __init__(self, name, age, major=None):

Person.__init__(self, name, age)
self.major = major

def change_major(self, major):
self.major= major

def speak(self):
r = random.random()
if r < 0.25:

print("i have homework")
elif 0.25 <= r < 0.5:

print("i need sleep")
elif 0.5 <= r < 0.75:

print("i should eat")
else:

print("i am watching tv")

def __str__(self):
return "student:"+str(self.name)+":"+str(self.age)+":"+str(self.major)

bring in methodsfrom random moduleinherits Person andAnimal attributes
adds new data

returns randomfloat in [0, 1)

OBJECT ORIENTED
PROGRAMMING
§ create your own collections of data

§ organize information

§ division of work

§ access information in a consistent manner

§ add layers of complexity

§ like functions, classes are a mechanism for
decomposition and abstraction in programming

PART II

STACK
§ a collection of items where the last added item is the first
item that can be retrieved/removed

you ca
n’t p

ick
 a botto

m element

before re
moving th

e to
p elements

STACK
§ a linear sequence of data like list, and tuple

§ support two main operations
§ push: which adds an element to the collection
§ pop: which removes the most recently added element that was

not yet removed

§ unlike lists,
§ items can be added only at one end
§ you only have access to top item
§ you can only remove the top item

§ The order in which elements come off a stack gives
rise to its alternative name, LIFO (last in, first out).

STACK IMPLEMENTATION
§ class name: Stack
§ data attributes:
§ container: we use a list to store stack elements
§ capacity: an integer representing the max number of elements that a stack instance can have

§ methods:
§ __len__: returns the size of stack
§ is_full: returns True iff the number of elements in stack equals to capacity
§ is_empty: returns True iff the stack is empty
§ push: adds a new element at the top of the stack
§ pop: removes the top element form stack
§ top: returns the top element without removing it
§ __str__: the string representation of a stack

§ let’s write the code for this. The file containing this code will be pushed to course repository for your
reference.

BUILT-IN STACK IN PYTHON?
§ list in python has stack interface which enables you to treat a list as a stack!

s = []

s.append(1)
s.append(2)

print(s[-1])

s.pop()

initializing an

empty stack

equivalent to

push

equivalent to

top

like stack

pop

STACK IN ACTION
§ you are given a string like ‘abcd’, by using a stack try to get
the reverse of the given string.

STACK and RECURSION
§ A stack is a recursive data structure. Here is a structural definition of a Stack:

◦ a stack is either empty or
◦ it consists of a top and the rest which is a stack

§ recursion is closely tied to stack
§ the recursive function calls are stored in a stack
§ they will return on the LIFO principle

§ you can devise iterative solutions for recursive problems
using an explicit stack!

QUEUE
§ a collection of items where the
first added item is the first
item that can be
retrieved/removed

QUEUE
§ a linear sequence of data like list, and tuple, stack

§ support two main operations
§ enqueue: which adds an element to the collection
§ dequeue: which removes the first added element that was not yet

removed

§ unlike lists,
§ items can be added only at one end
§ you only have access to the front item (also back item if you have a

double ended queue)
§ you can only remove the item at one end

§ The order in which elements come off a queue gives
rise to its alternative name, FIFO (first in, first out).

QUEUE IMPLEMENTATION
§ class name: Queue

§ data attributes:
§ container: we use a list to store stack elements

§ methods:
§ __len__: returns the size of queue
§ is_empty: returns True iff the queue is empty
§ enqueue: adds a new element at the back of the queue
§ dequeue: removes and returns the element at the front of the queue
§ front: returns the element at the front without removing
§ __str__: the string representation of the queue

§ let’s write the code for this. The file containing this code will be pushed to course repository for
your reference.

we assume

unbounded

capacity

BUILT-IN QUEUE IN PYTHON?
§ queue module in python has a number of queue implementations.

initializing an

empty queue

equivalent to

enqueue

equivalent to

is_empty

equivalent to

dequeue

from queue import Queue

q = Queue()

q.put('a')
q.put('b’)

print(q.empty())

print(q.get())

importing Que
ue

class from que
ue

module

Queue does not
have an equivalent
method to front()

QUEUE APPLICATIONS
§ used when things don’t have to be processed immediately, but have to be processed in First In
First Out order like Breadth First Search.

§ When a resource is shared among multiple consumers. Examples include CPU scheduling, Disk
Scheduling.

§ When data is transferred asynchronously (data not necessarily received at same rate as sent)
between two processes. Examples include IO Buffers, pipes, file IO, etc.

we will l
earn

this l
ater

LINKED LIST
§ a linear collection of data elements, whose order is not given
by their physical placement in memory. Instead, each element
points to the next. It is a data structure consisting of a
collection of nodes which together represent a sequence.

§ we have multiple variations of Linked Lists, like singly linked
lists and doubly linked lists. We only introduce singly linked
list here.

LINKED LIST is a
CHAIN of NODES

…

§ each node contains: data, and a reference (in other words, a link) to the next node in the sequence

NODE CLASS

class Node:

def __init__(self, data):
self.data = data
self.next = None # next Node after self in a LinkedList that self is

LINKED LIST § a linear sequence of data like list, and tuple, stack, queue

§ like lists
§ items can be added anywhere in the sequence
§ you can access any element in the sequence
§ you can remove any elements

§ unlike lists
§ no constant access to elements (you need to start from head and follow links to

reach your desired element)
§ removals and insertions takes places in constant time (in list, you may need to

shift elements)

§ Linked lists are dynamic, so the length of list can increase or decrease as
necessary. Each node does not necessarily follow the previous one
physically in the memory.

LINKED LIST IMPLEMENTATION
§ class name: LinkedList
§ data attributes:
§ head: the starting node in the linked list
§ size: the number of nodes in the linked list

§ methods:
§ __len__: returns the size of linked list
§ is_empty: returns True iff the linked list is empty
§ append: insert a given node at the end of linked list
§ find: return a node which has the given data
§ remove: removes a given node in the linked list
§ __str__: the string representation of the linked list

§ let’s write the code for this. The file containing this code will be pushed to course repository for your
reference.

BUILT-IN LINKED LIST in PYTHON
§ As of Python 3.7, doesn’t provide a dedicated linked list data type. There’s nothing like Java’s
LinkedList built into Python or into the Python standard library.

§ Python does however include the collections.deque class which provides a double-
ended queue and is implemented as a doubly-linked list internally.
Under some specific circumstances you might be able to use it as a “makeshift” linked list. If
that’s not an option you’ll need to write your own linked list implementation from scratch.

HASH TABLE
§ a structure that can map keys to
values. A hash table uses a hash
function to compute an index, also
called a hash code, into an array of
buckets or slots, from which the
desired value can be found.

HASH TABLE
§ a collection of key-value pairs of data

§ support two main operations
§ put: adds a given key-value pair to the collection
§ get: returns the value associated with a given key

§ unlike other sequences we’ve seen so far
§ items are not stored as a linear sequence

§ adding/retrieving a pair to/from a Hash Table is expected
to happen in constant time

§ the elements that come off a Hash Table do not necessarily
follow any specific order

will talk more

about this later

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

an empty hash table

a hash function

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

a key-value comes in

key1

value1

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

first compute the hash of key

key1

value1

§ hash function accepts keys as input, and outputs
an integer which represents a bucket index

§ the key-value pair like (k,v) will be put into a bucket,
with index = h(k)

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h

in each bucket

we have a linked list

of key value pairs

key1 value1

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

h(key2) is different

from h(key1)

key1 value1h

key2

value2

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

so it will be stored

in a different bucket

key1 value1h

key2 value2

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

hash function for

different keys

can return same

index!

key1 value1h

key2 value2

h

key3

value3

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n
if a bucket is not empty

then the new pair will

be appended to the

end of the linked list in

that bucket

key1 value1h

key2 value2

h key3 value3

INTERNAL STRUCTURE
BUCKETS

0

1

2

.

.

.

n

finally, some buckets may remain empty

and some others contain linked lists of

key-value pairs

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

how to find the

associated value

to key3?

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

first find the bucket

index, by computing

hash of key3

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

now, search for key3 in the linked list

inside the bucket

RETRIEVING VALUE for a KEY
BUCKETS

0

1

2

.

.

.

n

key1 value1

key2 value2

h key3 value3

key4 value4 key5 value5

keyN valueN…key3

if found, return associated value

otherwise raise KeyError

HASH FUNCTION
§ the idea of hashing is to distribute the entries (key/value pairs) across an array of buckets

§ a good hash function is a function which results in less collisions
§ a critical statistic for a hash table is the load factor, defined as

𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑛
𝑘

where
§ n is the number of entries occupied in the hash table.
§ k is the number of buckets.

§ as the load factor grows larger, the hash table becomes slower, and it may even fail to work

§ the expected constant time property of a hash table assumes that the load factor be kept below
some bound

BUILT-IN HASH TABLE in PYTHON?
§ dictionaries!

